
Reasoning About Firewall Policies Through
Refinement and Composition

Ultan Neville(B) and Simon N. Foley(B)

Department of Computer Science, University College Cork, Cork, Ireland
ultan.neville@insight-centre.org, s.foley@cs.ucc.ie

Abstract. An algebra is proposed for constructing and reasoning about
anomaly-free firewall policies. Based on the notion of refinement as safe
replacement, the algebra provides operators for sequential composition,
union and intersection of policies. The algebra is used to specify and
reason about iptables firewall policy configurations. A prototype policy
management toolkit has been implemented.

Keywords: Firewalls · Algebra · iptables · Anomalies · Policy-
composition

1 Introduction

Firewall configuration management is complex and error-prone, and a misconfig-
ured policy may permit accesses that were intended to be denied or vice-versa.
We regard the specification of a firewall policy as a process that evolves. Threats
to, and access requirements for, resources behind a firewall do not usually remain
static, and over time, a policy or distributed policy configuration may be updated
on an ad-hoc basis, possibly by multiple specifiers/administrators. This can be
problematic and may introduce anomalies; whereby the intended semantics of
the specified access controls become ambiguous.

In this paper, we present a firewall policy algebra FW1 for constructing and
reasoning over anomaly-free policies. The algebra allows policies to be composed
in such a way that the result upholds the access requirements of each policy
involved; and permits one to reason as to whether some policy is a safe (secure)
replacement for another policy in the sense of [11,14]. The proposed algebra
is used to reason about iptables firewall policy configurations. A partial map-
ping for the iptables filter table is given in the algebra. iptables is a command
line utility used to define policies for the Linux kernel firewall Netfilter [1]. We
focus on stateful firewall policies that are defined in terms of constraints on
source/destination IP/port ranges, the TCP, UDP and ICMP protocols, and
additional filter condition attributes.

The primary contribution of this paper is an algebra FW1, that can be used
to reason about firewall policies using refinement and composition operators.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 268–284, 2016.
DOI: 10.1007/978-3-319-41483-6 19

Reasoning About Firewall Policies Through Refinement and Composition 269

The effectiveness of the algebra is demonstrated by its application to anomaly
detection, and standards compliance.

The paper is organised as follows. Section 2 introduces the notion of adja-
cency, which is at the heart of reasoning about/composing firewall rules that
involve IP/port ranges. In Sect. 3 we define datatypes for firewall rule attributes,
such as IP/port ranges. Section 4 defines the firewall policy algebra FW1. In
Sect. 5, we use FW1 to reason about firewall policies in practice. Section 6
describes a prototype policy management toolkit for iptables and presents some
preliminary results. Related work is outlined in Sects. 7 and 8 concludes the
paper. The Z notation [19] is used to present the algebra and has been syntax-
and type-checked using the fuzz tool.

2 A Theory of Adjacency

A firewall policy is conventionally defined as a sequence of order-dependent rules.
A rule is composed of filter conditions and a target action. Filter conditions usu-
ally consist of fields/attributes from IP, TCP/UDP headers; with the most com-
monly used attributes being source/destination IP/port, and network protocol.
Target actions are usually allow or deny [3,8].

Range-based filter condition attributes (IPs/ports) have logical mappings to
intervals of N. For example, the port range that includes all ports from SSH
up and including HTTP can be written as the interval [22..80]. Consider as
part of a running example, a system that is capable of enforcing firewall rules
where the filter condition attribute for the rules is destination port range. Then
if we had a rule that allowed all ports from SSH to HTTP, it may look like:
(i , [22..80], allow), where i is the index of the rule in the policy, [22..80] is
the required port range, and allow means that network traffic matching this
pattern be permitted traversal of the firewall. Suppose we had a second rule, that
specifies allow everything from Quote Of The Day (QOTD) up to and including
FTP Control. Then (j , [17..21], allow), specifies that for the rule at index j ;
the required port range [17..21] is allowed. Intuitively, we can see that the port
ranges for the rules at index i and index j are adjacent, and we may want to join
rules i and j into a single rule that looks like (k , [17..80], allow). This notion
of adjacency becomes more complex when we consider comparing/composing
firewall rules comprising 2..n filter condition attributes.

2.1 The Adjacency Specification

In this section we define the filter condition attribute relationships of adjacency,
disjointness and subsumption. These relationships are at the heart of adjacency,
and ultimately the FW1 algebra.

Let IV[min,max] be the set of all intervals on the natural numbers, from
min up to and including max . Intervals are defined by their corresponding sets.

IV[min,max] == {S : PN | ∃ ⊥,� : S • ∀ x : S • min ≤ ⊥ ≤ x ≤ � ≤ max}

270 U. Neville and S.N. Foley

For example, IV[1, 3] gives {[1..1], [1..2], [1..3], [2..2], [2..3], [3..3]}. For ease of
exposition and when no ambiguity arises, we may write an interval as a pair
[⊥..�], rather than by the set it defines. Let IPv4 define the set of all possible
IPv4 address ranges, and similarly, let Port define the set of all possible network
port ranges, where IPv4 == IV[0, 232 − 1] ∧ Port == IV[0, 216 − 1].

Adjacency. Two intervals are adjacent if their union defines a single interval. We
generalize this to any attribute of type X , whereby for a, b ∈ X , if a 	X b, then
a and b are adjacent in the set X .

[X]
	 : PX
→ (X ↔ X)

∀ a, b : X •
a 	X a ∧ (a 	X b ⇒ b 	X a)

For example, interval [1..2] is adjacent to interval [3..3], thus [1..2] 	IV[1,3] [3..3].
It follows for a, b ∈ N that a 	N b ⇔ (a = b ∨ a + 1 = b ∨ b + 1 = a), and given
S ,T ∈ PX then S 	PX T ⇔ true.

Disjointness. Two intervals are disjoint if they don’t intersect. Given a, b ∈ X ,
a |X b denotes a and b are disjoint in X .

[X]
| : PX
→ (X ↔ X)

∀ a, b : X •
¬ (a |X a) ∧ (a |X b ⇒ b |X a)

For example, [1..2] and [3..3] are disjoint, thus [1..2] |IV[1,3] [3..3]. It follows for
a, b ∈ N that a |N b ⇔ a �= b, and given S ,T ∈ PX then S |PX T ⇔ S ∩T = ∅.

Subsumption. An interval I subsumes (covers) an interval J , if J ⊆ I . For
a, b ∈ X , if a X← b then b covers a in X . The properties of reflexivity, transitivity
and antisymmetry define X← as a non-strict partial order over X [5].

[X]
← : PX
→ (X ↔ X)

∀ a, b, c : X •
a X← a ∧ (a X← b ∧ b X← c ⇒ a X← c) ∧ (a X← b ∧ b X← a ⇒ a = b)

Reasoning About Firewall Policies Through Refinement and Composition 271

For example, [1..3] covers [3..3], thus [3..3]
IV[1,3]← [1..3]. It follows for a, b ∈ N

that a N← b ⇔ a = b, and given S ,T ∈ PX , then S PX← T ⇔ S ⊆ T .
For a set X and S ∈ PX , the flattening function �S� gives the cover-set for

the elements of S .

[X]
� � : PX
→ PX

∀S : PX •
�S� = S \ {a, a ′ : S | a X← a ′ ∧ a �= a ′ • a}

For example, �IV[1, 3]� = {[1..3]}. We define a difference operator for S ,T ∈
PX , where S \PX T gives the relative compliment of T in S .

[X]
\ : P(PX) �→ PX×PX → PX

∀S ,T : PX •
S \PX T = �{a : S ; c : X | c X← a ∧ (∀ b : T • ¬ (c

X← b)) • c}�

For example, �IV[1, 3]� \IV[1,3] {[1..1], [3..3]} = {[2..2]}.

3 Filter Condition Attribute Datatypes

In this section we define the datatypes used to construct the filter condition
attributes for the FW1 policy model.

3.1 The Adjacency Datatype

For a set X , the Adjacency datatype α[X], is the set of all closed subsets of X
partitioned by adjacency.

α[X] == {S : PX | (∀ a, b : S | a �= b • ¬ (a 	X b))}

For example α[IV[1, 3]] gives {{[1..1]}, {[1..2]}, {[1..3]}, {[2..2]}, {[2..3]}, {[3..3]},
{[1..1],[3..3]}}, and α[IPv4] defines the set of all closed subsets for the intervals
of the IPv4 address range partitioned by adjacency.

Adjacency Ordering. An ordering can be placed over Adjacency-sets, and is
defined as follows.

272 U. Neville and S.N. Foley

[X]
⊥,
 : α[X]
not : α[X] → α[X]

≤ : α[X] ↔ α[X]
⊗ ,
⊕ : α[X]×α[X] → α[X]

⊥ = ∅ ∧
 = �X �
∀S ,T : α[X] •

notS =
 \α[X] S ∧
S ≤ T ⇔ (∀ a : S • ∃ b : T • a

X← b) ∧
S ⊗ T = �⋃{U : α[X] | ∀ c : U • ∃ a : S ; b : T • c

X← a ∧ c
X← b}� ∧

S ⊕ T =
⋂{U : α[X] | ∀ c : U • ∃ a : S ; b : T • a

X← c ∨ b
X← c}

The elements ⊥,� ∈ α[X] define the least and greatest bounds, respectively,
on α[X], where for any S ∈ α[X], then ⊥ ≤ S ≤ �. Adjacency negation defines a
valid complement operator in α[X], where (S ⊕notS) = � and (S ⊗notS) = ⊥.

Adjacency Intersection. Under this ordering, the meet, or intersection S ⊗ T of
S ,T ∈ α[X] is defined using subsumption, as the cover-set for the generalized
union of all Adjacency-sets, where each element of (S ⊗ T) is covered by an
element in both S and T . Intuitively, this means that the values of the meet are
all non-empty intersections of each value in S with each value in T . Under the
ordering relation ≤, ⊗ provides a greatest lower bound (glb) operator, and S ⊗T
is covered by both S and T , that is (S ⊗ T) ≤ S and (S ⊗ T) ≤ T .

Adjacency Union. The join of S ,T ∈ α[X] is defined using subsumption, as the
generalized intersection of all Adjacency-sets, where each element of (S ⊕ T)
covers an element in either S or T . Intuitively, this means that the values of the
join are exactly a union of the elements from both S and T . Given the definition
of ordering using subsumption, it follows that the Adjacency join provides a
lowest upper bound (lub) operator. Since ⊕ provides a lub operator we have
S ≤ (S ⊕ T) and T ≤ (S ⊕ T).

Proposition. The poset (α[X],≤) forms a distributive lattice with compliment
operator not. This follows from the definition of ≤ as a subsumption order-
ing/an antisymmetric preorder, the properties of not, the intuitive definition of
the meet of S ,T ∈ α[X] as all non-empty intersections of each value in S with
each value in T , and the intuitive definition of the join operation as an exact
union of the elements from both S and T [18].

Given the adjacency, disjointness and subsumption relations; then for S ,T ∈
α[X], we define S 	α[X]T ⇔ true ∧ S |α[X] T ⇔ S⊗T = ⊥ ∧ S

α[X]← T ⇔ S ≤ T .

Reasoning About Firewall Policies Through Refinement and Composition 273

3.2 The Duplet Datatype

A duplet is an ordered pair, where the set of all duplets for types X ,Y , is
defined as δ[X ,Y], where δ[X ,Y] == X×Y . For example, δ[IV[1, 1], IV [1, 2]]
gives {([1..1],[1..1]), ([1..1],[1..2]), ([1..1], [2..2])}, and δ[α[IPv4], α[Port]] gives
the set of all duplets for adjacency-free IP/port-ranges.

Recall the earlier example of the firewall system that supports only destina-
tion port range filter conditions. Suppose we want to extend the expressiveness
of the policy rules for this system to include a definition for destination IP range.
Then α[δ[α[IPv4], α[Port]]], is the set of all closed subsets of adjacency-free
IP/port-range duplets, partitioned by adjacency. Consider two policy require-
ments, where network traffic is to be allowed to the IP range [1..3] on ports
[1..3], and to the IP range [2..4] on ports [2..4]. Then modelling this using sets
of adjacency-free duplets, we have S ,T ∈ α[δ[α[IPv4], α[Port]]], where S ==
{({[1..3]}, {[1..3]})} and T == {({[2..4]}, {[2..4]})}.

Duplet Disjointness. A pair of duplets are disjoint if the attributes in the first
coordinate are disjoint, or the attributes in the second coordinate are disjoint.
For (a1, b1), (a2, b2) ∈ δ[X ,Y], then:

(a1, b1) |δ[X ,Y] (a2, b2) ⇔ (a1 |X a2 ∨ b1 |Y b2)

For example, ¬ (S |α[δ[α[IPv4],α[Port]]] T).

Duplet Adjacency. A pair of duplets are adjacent if the attributes in the first
coordinate are adjacent, and the attributes in the second coordinate are not
disjoint. Thus, we have:

(a1, b1) 	δ[X ,Y] (a2, b2) ⇔ (a1 	X a2 ∧ ¬ (b1 |Y b2))

For example, S 	α[δ[α[IPv4],α[Port]]] T .

Duplet Subsumption. A duplet is distinguished from a standard ordered pair,
whereby we explicitly define orderings separately in each coordinate. For exam-
ple, suppose we wanted to join adjacent policies S and T , then under a ‘standard’
Cartesian product ordering we have S ⊕T = {({[1..4]}, {[1..4]})}. This obviously
results in an overly permissive policy, conversely; an overly restrictive policy if we
were composing deny rules. A duplet (a1, b1) covers a duplet (a2, b2) in δ[X ,Y],
if a1 covers a2 in X , and b2 covers b1 in Y . Thus:

(a2, b2)
δ[X ,Y]← (a1, b1) ⇔ (a2

X← a1 ∧ b1
Y← b2)

Then we have S⊕T = {({[1..4]}, {[2..3]}), ({[1..3]}, {[1..1]}), ({[2..4]}, {[4..4]})}.
Thus, the join, or union (S ⊕ T) of S and T , defines the adjacency-free coa-
lescence of all duplets from S and T . For reasons of space, we do not give the
implementation definition for this operation.

274 U. Neville and S.N. Foley

3.3 The Stateful/Protocol Datatype

In this section, we define the network protocols of interest for the model and
encode a notion of state. The iptables command line utility allows the end-user
to specify one (or all) of seven different protocols in a rule [1]. For reasons of
space, we focus only on the TCP, UDP and ICMP protocols.

Let Flags be the set of TCP flags, where Flags ::= syn | ack | fin | psh |
rst | urg. The TCP protocol is defined as the set of all sets of pairs of sets of
Flags, whereby for each pair; the first set contains the flags that are to be exam-
ined in a packet-header, and the second set contains the flags that must be set
(in a packet-header). In [1], these are referred to as the comp and mask values
for a packet, respectively. Let TCP be the set of all sets of comp/mask pairs,
where TCP == P(PFlags×PFlags). Let [TypesCodes] be the set of all valid
ICMP Type/Code pairs. For simplicity and reasons of space, we do not con-
sider how the values of TypesCodes may be constructed, other than to assume
that the usual human-readable notation can be used, such as (8,0) and (17,0)
∈ TypesCodes. The iptables conntrack modules’ statelist [1] may be defined as fol-
lows. Let State be the set of connection tracking states for a packet/connection,
where State ::= new | established | related | invalid | untracked.

Let Protocol define the set of all protocols, given as the set of all duplets over
TCP , UDP ([0..1]), ICMP (PTypesCodes) and the set of all sets of connection
tracking states (PState).

Protocol == δ[TCP , δ[{0, 1}, δ[PTypesCodes,PState]]]

Proposition. The Protocol datatype forms a product-lattice structure. This fol-
lows from the definition of Protocol as the product of powerset/binary lattices [5].

4 The FW1 Policy Algebra

In this section we define an algebra FW1, for constructing and reasoning about
anomaly-free firewall policies. We focus on stateful firewall policies that are
defined in terms of constraints on source/destination IP/port ranges, the TCP,
UDP and ICMP protocols.

A filter condition is a five-tuple (s, sprt , d , dprt , p), representing network
traffic originating from source IP range s, with source port range sprt , destined
for destination IP range d , with destination port range dprt , using stateful-
protocols p. Let FC define the set of all filter conditions, where:

FC == δ[α[IPv4], δ[α[Port], δ[α[IPv4], δ[α[Port],Protocol]]]]

A firewall policy defines the filter conditions that may be allowed or denied
by a firewall. Let Policy define the set of all firewall policies, whereby:

Policy == {A,D : α[FC] | ∀ a : A; d : D • a |FC d}

Reasoning About Firewall Policies Through Refinement and Composition 275

A firewall policy (A,D) ∈ Policy defines that a filter condition f ∈ A should
be allowed by the firewall, while a filter condition f ∈ D should be denied.
Given (A,D) ∈ Policy then A and D are disjoint: this avoids any contradiction
in deciding whether a filter condition should be allowed or denied. Given that A
and D are also both adjacency-free; then Policy defines the set of anomaly-free
firewall policies in the sense that they contain no redundancy, shadowing, or
other anomalies [4].

Note that (A,D) ∈ Policy need not partition �FC �: the allow and deny sets
define the filter conditions to which the policy explicitly applies, and an implicit
default decision is applied for those filter conditions in �FC � \α[FC] (A ⊕ D).
For the purposes of modelling iptables firewalls it is sufficient to assume default
deny, though we observe that FW1 can also be used to reason about default allow
firewall policies. The policy destructor functions allow and deny are analogous
to functions first and second for ordered pairs:

allow , deny : Policy → α[FC]

∀A,D : α[FC] •
allow (A,D) = A ∧ deny (A,D) = D

Policy Refinement. An ordering can be defined over firewall policies, whereby
given P ,Q ∈ Policy then P � Q means that P is no less restrictive than Q , that
is, any filter condition that is denied by Q is denied by P . Intuitively, policy P is
considered to be a safe replacement for policy Q , in the sense of [11,14] and any
firewall that enforces policy Q can be reconfigured to enforce policy P without
any loss of security. The set Policy forms a lattice under the safe replacement
ordering and is defined as follows.

FW1

⊥,� : Policy
� : Policy ↔ Policy
� ,
� : Policy×Policy → Policy

⊥ = (∅, �FC �) ∧ � = (�FC �, ∅)
∀P ,Q : Policy •

P � Q ⇔ ((allow P ≤ allow Q) ∧ (deny Q ≤ deny P)) ∧
P � Q = (allow P ⊗ allow Q , deny P ⊕ deny Q) ∧
P � Q = (allow P ⊕ allow Q , deny P ⊗ deny Q)

Formally, P � Q iff every filter condition allowed by P is allowed by Q and
that any filter conditions explicitly denied by Q are also explicitly denied by
P . Note that in this definition we distinguish between filter conditions explicitly
denied in the policy versus those implicitly denied by default. This means that,
everything else being equal, a policy that explicitly denies a filter condition is

276 U. Neville and S.N. Foley

considered more restrictive than a policy that relies on the implicit default-deny
for the same network traffic pattern. Safe replacement is defined as the Cartesian
product of Adjacency orderings over allow and deny sets and it therefore follows
that (Policy ,�) is a poset.

⊥ and � define the most restrictive and least restrictive policies, that is, for
any P ∈ Policy we have ⊥ � P � �. Thus, for example, any firewall enforcing
a policy P can be safely reconfigured to enforce the (not very useful) firewall
policy ⊥.

Policy Intersection. Under this ordering, the meet P �Q , of two firewall policies
P and Q is defined as the policy that denies any filter condition that is explicitly
denied by either P or Q , but allows filter conditions that are allowed by both
P and Q . Intuitively, this means that if a firewall is required to enforce both
policies P and Q , it can be configured to enforce the policy (P �Q) since P �Q
is a safe replacement for both P and Q , that is; (P � Q) � P and (P � Q) � Q .
Given the definition of safe replacement as a product of two Adjacency lattices,
it follows that the policy meet provides the glb operator. Thus, P � Q provides
the ‘best’/least restrictive safe replacement (under �) for both P and Q .

Policy Union. The join of two firewall policies P and Q is defined as the pol-
icy that allows any filter condition allowed by either P or Q , but denies filter
conditions that are explicitly denied by both P and Q . Intuitively, this means
that a firewall that is required to enforce either policy P or Q can be safely
configured to enforce the policy (P � Q). Since � provides a lub operator we
have P � (P � Q) and Q � (P � Q).

Proposition. The set of all policies Policy forms a lattice under safe replacement.
This follows from the definition of � as a Cartesian product of two Adjacency
lattice orderings.

4.1 Constructing Firewall Policies

The lattice of policies FW1 provides us with an algebra for constructing and
interpreting firewall polices. The following constructor functions are used to build
primitive policies. Given a set of adjacency-free filter conditions A, then (AllowA)
is a policy that allows filter conditions in A, and (DenyD) is a policy that
explicitly denies filter conditions in D .

Allow,
Deny : α[FC] → Policy

∀S : α[FC] •
Allow S = (S , ∅) ∧ Deny S = (∅,S)

This provides what we refer to as a weak interpretation of allow and deny.
Network traffic patterns that are not explicitly mentioned in parameter S are

Reasoning About Firewall Policies Through Refinement and Composition 277

default-deny and therefore are not specified in the deny set of the policy. The
following provides us with a strong interpretation for these constructors:

Allow+,
Deny+ : α[FC] → Policy

∀S : α[FC] •
Allow+ S = (S ,not S) ∧ Deny+ S = (notS ,S)

In this case (Allow+ A) allows filter conditions specified in A, while explic-
itly denying all other filter conditions, and (Deny+ D) denies filter conditions
specified in D while allowing all other filter conditions.

Proposition. A firewall policy P ∈ Policy can be decomposed into it’s corre-
sponding allow and deny sets, and re-constructed using the algebra; for any
(A,D) ∈ Policy , since A and D are disjoint then:

(Allow+ A) � (DenyD) = (A, �FC � \α[FC] A) � (∅,D)
= (A,D)
= (AllowA) � (Deny+ D)

5 Reasoning About Policies in Practice

Sequential Composition. A firewall policy is conventionally constructed as a
sequence of rules, whereby for a given network packet, the decision to allow or
deny that packet is checked against each policy rule, starting from the first, in
sequence, and the first rule that matches gives the result that is returned. The
algebra FW1 can be extended to include a similar form of sequential composition
of policies. The policy constructions above can be regarded as representing the
individual rules of a conventional firewall policy.

Let (AllowA) o
9 Q denote a sequential composition of an allow rule (AllowA)

with policy Q with the interpretation that a given network packet matched in
A is allowed; if it does not match in A then policy Q is enforced. The resulting
policy either: allows filter conditions in A (and denies all other filter conditions),
or allows/denies filter conditions in accordance with policy Q . We define:

(AllowA) o
9 Q = (Allow+ A) � Q

= ((A ⊕ allow(Q)), ((�FC � \α[FC] A) ⊗ deny(Q)))
= ((A ⊕ allow(Q)), (deny(Q) \α[FC] A))

which is as expected. A similar definition can be provided for the sequential
composition (DenyD) o

9 Q , whereby a given network packet that is matched in
D is denied; if it does not match in D then policy Q is enforced. We define:

(DenyD) o
9 Q = (Deny+ D) � Q

= (allow(Q) \α[FC] D , deny(Q) ⊕ D)

278 U. Neville and S.N. Foley

While in practice its usual to write a firewall policy in terms of many con-
structions of allow and deny rules, in principle, any firewall policy P ∈ Policy
can be defined in terms of one allow policy (Allow allow(P)) and one deny pol-
icy (Deny deny(P)) and since the allow and deny sets of P are disjoint we have
P o

9 Q = (Deny deny(P)) o
9 (Allow allow(P)) o

9 Q . We define this as:

o
9 : Policy×Policy → Policy

∀FW1; P ,Q : Policy •
P o

9 Q = (Q � (Allow+ (allow(P)))) � (Deny+ (deny(P)))

Let Rule define the set of all firewall rules, where Rule:: = allow 〈〈FC 〉〉 |
deny 〈〈FC 〉〉. We define a rule interpretation function as:

I : Rule → Policy

∀ f : FC •
I(allow f) = Allow({f }) ∧ I(deny f) = Deny({f })

A firewall policy is defined as a sequence of rules 〈r1, r2, .., rn〉, for ri ∈ Rule,
and is encoded in the policy algebra as I(r1) o

9 I(r2) o
9 .. o

9 I(rn).

Policy Negation. The policy negation of P ∈ Policy allows filter conditions
explicitly denied by P and explicitly denies filter conditions allowed by P . We
define:

not : Policy → Policy

∀FW1; P : Policy •
notP = (Allow+ (deny (P))) � (Deny (allow (P)))

From this definition it follows that (notP) is simply (deny (P), allow (P))
and thus not (DenyD) = (AllowD) and not (AllowA) = (DenyA). Note how-
ever, that in general policy negation does not define a complement operator in
the algebra FW1, that is, it not necessarily the case that (P � notP) = � and
(P � notP) = ⊥.

5.1 Anomaly Analysis

A firewall policy is conventionally constructed as a sequence of order-dependent
rules, and when a network packet matches with two or more policy rules, the
policy is anomalous [3,4,8]. By definition, the adjacency-free allow and deny sets
of some P ∈ Policy are disjoint, therefore P is anomaly-free by construction.
We can however define anomalies using the algebra; by considering how a policy
changes when composed with other policies.

Reasoning About Firewall Policies Through Refinement and Composition 279

Redundancy. A policy P is redundant given policy Q if their composition results
in no difference between the resulting policy and Q , in particular, if P o

9 Q = Q .

Shadowing. Some part of policy Q is shadowed by the entire policy P in the
composition P o

9 Q if the filter condition constraints that are specified by P
contradict the constraints that are specified by Q , in particular, if (notP) o

9Q =
Q . This is a very general definition for shadowing. Perhaps a more familiar
interpretation of this definition is one where the policy P is a specific allow/deny
rule that shadows a part or all of the policy with which it is composed. Recall
that (not(AllowA)) = (DenyA) and, for example, in (AllowA) o

9 Q all or part of
policy Q is shadowed by the rule/primitive policy (AllowA) if Q denies the filter
conditions specified in A, that is, (DenyA) o

9 Q = Q . Similarly, in (DenyD) o
9 Q

part or all of policy Q is shadowed by the rule/primitive policy (DenyD) if
(not (DenyD)) o

9 Q = Q . Further definitions for shadowing may be constructed
using the algebra. For example, an initial interpretation of the generalisation
anomaly [3] in the composition P o

9 Q ; is where Q is generalised by P if all of
P shadows (specifically) part of Q . We are currently investigating how this and
other anomalies can be reasoned about within the algebra.

Inter-policy Anomalies. Anomalies can also occur between the different policies
of distributed firewall configurations [4]. In the following, assume that P is a
policy on an upstream firewall and Q is a policy on a downstream firewall.

An inter-redundancy anomaly exists between policies P and Q if some part
of Q is redundant to some part of P , whereby the target action of the redundant
filter conditions is deny. Given some set of filter conditions A denied by P , and
some set of filter conditions B denied by Q , if (DenyA) o

9 (DenyB) = (DenyA)
then there exists an inter-redundancy between P and Q .

An inter-shadowing anomaly exists between policies P and Q if some part
of Q ’s allows are shadowed by some part of P ’s denies. Given some set of filter
conditions A denied by P , and some set of filter conditions B allowed by Q ,
if (DenyA) o

9 (AllowB) = (DenyA), then there is an inter-shadowing anomaly
between P and Q .

An inter-spuriousness anomaly exists between policies P and Q if some part
of Q ’s denies are shadowed by some part of P ’s allows. Again, given some set
of filter conditions A allowed by P , and some set of filter conditions B denied
by Q , if (AllowA) o

9 (DenyB) = (AllowA), then there exists an inter-spuriousness
anomaly between P and Q .

5.2 Standards Compliance

RFC 5735 [7], details fifteen IPv4 address blocks/ranges that have been assigned
by the Internet Assigned Numbers Authority (IANA) for specialized/global pur-
poses. Some of these address spaces may appear on the Internet, and may be
used legitimately outside a single administrative domain, however, while the
assigned values of the ranges do not directly raise security issues; unexpected
use may indicate an attack [7]. For example, packets with a source IP address

280 U. Neville and S.N. Foley

from the private address space 172.16.0.0/12, arriving on the Wide Area Net-
work interface of a network router, may be considered spoofed, and may be part
of a Denial of Service (DoS), or Distributed DoS attack.

RFC 5735 Compliance. An IP spoof-mitigation compliance policy RFC5735 is
defined. Best practice recommendations are implemented for each of the fifteen
specialized IP ranges in [7], resulting in one hundred and twenty iptables deny
rules. In [10], we defined this deny ruleset for a firewall management tool, we
do not give the definition here for reasons of space. The compliance policy ter-
minates with a final iptables rule that specifies all other traffic be permitted.
To model these iptables rules in the algebra, we define some additional filter
condition attributes and provide a more formal definition of RFC5735.

An Extended Firewall Policy. An attribute for the iptables filter table chains
may be defined as Chain ::= input | output | forward. Direction-based filtering
may be given as Dir ::= ingress | egress, and the set of all sets of interfaces on
a machine may be given as P Iface, where for simplicity, we assume elements of
Iface resemble eth0, wlan0, tun0, etc. Let AdditionalFC be the set of all duplets
for additional filter condition attributes of interest for this paper, whereby:

AdditionalFC == δ[PChain, δ[PDir ,P Iface]]

A revised definition for the set of all filter conditions FCI is given as:

FCI == δ[α[IPv4], δ[α[Port], δ[α[IPv4], δ[α[Port], δ[Protocol ,AdditionalFC]]]]]

A revised definition for the set of all policies PolicyI is given as:

PolicyI == {A,D : α[FCI] | ∀ a : A; d : D • a |FCI d}
The compliance policy RFC5735 ∈ PolicyI , defines the minimum requirement

for what it means for some perimeter network firewall policy to mitigate the
threat of IP spoofing for all traffic, in accordance with RFC 5735. Thus, we have
for all P ∈ PolicyI , if P � RFC5735, then P complies with the best practice
recommendations outlined in [7] for IP spoof-mitigation.

6 Encoding and Evaluating Iptables Policies

A prototype policy management toolkit has been implemented in Python for
iptables. We reason over PolicyI policies using (o9,�,�); time-based performance-
analysis tests were conducted. The test-bed for the experiments was a 64-Bit
Ubuntu 14.04 LTS OS, running on a Dell Latitude E6430, with a quad-core
Intel i5-3320M processor and 4 GB of RAM. Every experiment was conducted
three times; the median result chosen for inclusion in this paper. Overall, the
results are promising.

Reasoning About Firewall Policies Through Refinement and Composition 281

Evaluating Sequential Policy Composition. Two datasets were generated for
experimentation. Each dataset consists of iptables policies of size 24..211. One
dataset contains policies where no rule is adjacent to any other rule (other
than itself), and the other dataset consists of policies where every new rule
is adjacent to the previous rule; to ensure the maximum number of possi-
ble rules are generated as a result of composition. The rules all have a tar-
get action of allow. The implementation parses the system’s currently enforced
iptables ruleset 〈r1, r2..rn〉 by chain, and then normalizes each rule to a prim-
itive/singleton policy 〈I(r1), I(r2)..I(rn)〉. The overall policy for the chain is
evaluated as I(r1) o

9 I(r2) o
9 .. o

9 I(rn). For reasons of space, we give the results for
the sequential composition experiments as lists of tuples (P,T (P)), where P is
the policy named by the number of iptables rules it was constructed from for
the experiment, and T (P) is the time taken in seconds for the evaluation of the
sequential composition of the rules in P. For the adjacent dataset we have [(24,
0.80), (25, 2.02), (26, 5.13), (27, 15.32), (28, 51.18), (29, 183.42), (210, 707.15),
(211, 2792.81)]. We observe that the evaluation time for the sequential compo-
sition of 29 rules is around three minutes, and T (211) is approximately forty six
minutes. For the non-adjacent dataset, we have [(24, 0.07), (25, 0.13), (26, 0.29),
(27, 0.67), (28, 1.73), (29, 4.98), (210, 16.09), (211, 57.81)], and we see that for
the largest ruleset, 211, T (211) is approximately one minute.

Evaluating Policy Union. Experiments were conducted to test policy lub,
whereby each policy in the adjacent dataset was split into two policies, where
the first policy contains the odd (index) rules from the original policy, and the
second policy contains the even (index) rules from the original policy. Then for
each P ,Q ∈ PolicyI in this split dataset, the time taken for the operation P �Q
is encoded in the matrix in Table 1. The times taken for composition of policies
of equal size are approximately the same as (slightly less than) those for the
results given in the adjacent sequential composition dataset. This is highlighted
through the diagonal in the matrix, and is as expected; given that we used all
allow rules.

Table 1. Time taken to compute P � Q (in seconds)

P
Q

23 24 25 26 27 28 29 210

23 0.65 0.79 0.81 0.99 1.40 2.51 5.73 16.93

24 0.79 1.86 2.09 2.32 2.91 4.50 8.83 22.19

25 0.81 2.09 4.97 5.45 6.78 9.17 15.50 32.89

26 0.99 2.32 5.45 14.70 17.01 21.93 32.29 57.47

27 1.40 2.91 6.78 17.01 48.85 58.44 76.94 119.28

28 2.51 4.50 9.17 21.93 58.44 179.87 217.34 294.56

29 5.73 8.83 15.50 32.29 76.94 217.34 699.11 839.49

210 16.93 22.19 32.89 57.47 119.28 294.56 839.49 2722.63

282 U. Neville and S.N. Foley

Evaluating Policy Compliance. A further dataset consisting of iptables policies
of size 24..211 was generated to test policy compliance. Each policy in this dataset
was RFC 5735 compliant by construction. Results are again given as a list of
tuples (P,T (P)), where P is the policy named by the number of iptables rules
it was constructed from for the experiment, and T (P) is the time taken in
seconds for the evaluation of P � RFC5735. We have [(24, 1.07 ×10−3), (25, 1.62
×10−3), (26, 2.23 ×10−3), (27, 3.50 ×10−3), (28, 5.24 ×10−3), (29, 1.03 ×10−2),
(210, 2.76 ×10−2), (211, 4.95 ×10−2)], and we see that for each P ∈ PolicyI in
this compliance-dataset T (P) is negligible.

7 Related Work

In [3], a firewall policy is modelled as a single rooted tree, relations between
rules are defined on a pairwise basis, and definitions for firewall configuration
anomalies are provided. In [4], the work is extended to distributed firewall poli-
cies. In [8], a firewall policy is modelled as a linked-list, and in [13] rule rela-
tions within a policy are modelled in a directed graph. In [20] Binary Decision
Diagrams are used to model firewall rulesets. We model a firewall policy as
an ordered pair of disjoint adjacency-free sets, where the set of policies Policy
forms a lattice under �, and each P ∈ Policy is anomaly-free by construction.
In [3,4,8,13,20] an algorithmic approach is taken to detect/resolve anomalies.
We follow an algebraic (as opposed to algorithmic) approach towards modelling
anomalies in a single policy, and across a distributed policy configuration through
policy composition. In earlier work [12], we developed the algebra FW0, and
used it to reason over host-based and network access controls in OpenStack.
In the FW0 algebra, we focused on stateless firewall policies that are defined
in terms of constraints on individual IPs, ports and protocols. In this paper,
the algebra FW1 is defined over stateful firewall policies constructed in terms
of constraints on source/destination IP/port ranges, the TCP, UDP and ICMP
protocols, and additional filter condition attributes. We argue that FW1 gives a
more expressive means for reasoning over OpenStack security group and perime-
ter firewall configurations. In [16], cloud calculus is used to capture the topology
of cloud computing systems and the global firewall policy for a given configura-
tion. This paper could extend the work in [16], given that FW1 may be used
in conjunction with cloud calculus to guarantee anomaly-free dynamic firewall
policy reconfiguration, where the ordering relation � may give a viable alterna-
tive for the given equivalence relation defined over ‘cloud’ terms for the formal
verification of firewall policy preservation after a live migration. In [21], a fire-
wall policy algebra is proposed. However, the authors note that an anomaly-free
composition is not guaranteed as a result of using their algebraic operators. Our
work differs, in that policy composition under the �,� and o

9 operators defined
in this paper all result in anomaly-free policies. In [2], an abstract model for
Netfilter is proposed, and a language to specify firewall configurations is intro-
duced that is similar to the XML-based access control language supported by
Or-BAC presented in [9]. In [17], a formal model of Netfilter is defined, and the

Reasoning About Firewall Policies Through Refinement and Composition 283

properties of reachability and cyclicity within firewall policy configurations are
investigated. In [6], a theorem-proving approach is used to reason about fire-
wall policies. The proposed algebra FW1 is used to reason about and compose
anomaly-free policies and therefore we do not have to worry about dealing with
conflicts that may arise. Anomaly conflicts are dealt with in composition by
computing anomaly-free policies, rather than using techniques such as [15] to
resolve conflicts in policy decisions. Encoding a definition for Network Address
Translation in FW1 is a topic for future research.

8 Conclusion

A policy algebra FW1 is defined in which firewall policies can be specified and
reasoned about. At the heart of this algebra is the notion of safe replacement,
that is, whether it is secure to replace one firewall policy by another. The set of
policies form a lattice under safe replacement and this enables consistent opera-
tors for safe composition to be defined. Policies in this lattice are anomaly-free
by construction, and thus, composition under glb and lub operators preserves
anomaly-freedom. A policy sequential composition operator is also proposed that
can be used to interpret firewall policies defined more conventionally as sequences
of rules. The algebra can be used to characterize anomalies, such as shadowing
and redundancy, that arise from sequential composition. Best practice policy
compliance may be defined using �. The algebra FW1 provides a formal inter-
pretation of the network access controls for a partial mapping to the iptables
filter table. FW1 is a generic algebra and can also be used to model other fire-
wall systems. The results in this paper are described in terms of the algebra
FW1, for stateful firewall policies that are defined in terms of constraints on
source/destination IP/port ranges, the TCP, UDP and ICMP protocols, and
additional filter condition attributes.

Acknowledgement. This work was supported, in part, by Science Foundation Ireland
under grant SFI 10/CE/I1853 and Irish Research Council/Chist-ERA.

References

1. Linux iptables - CLI for configuring the Linux kernel firewall, Netfilter. http://
www.netfilter.org/projects/iptables/index.html

2. Adão, P., Bozzato, C., Dei Rossi, G., Focardi, R., Luccio, F.L.: Mignis: a seman-
tic based tool for firewall configuration. In: Proceedings of the 2014 IEEE 27th
Computer Security Foundations Symposium, pp. 351–365. IEEE (2014)

3. Al-Shaer, E., Hamed, H.: Firewall policy advisor for anomaly discovery and rule
editing. In: Goldszmidt, G., Schönwälder, J. (eds.) Integrated Network Manage-
ment VIII. IFIP, vol. 246, pp. 17–30. Springer, New York (2003)

4. Al-Shaer, E., Hamed, H., Boutaba, R., Hasan, M.: Conflict classification and analy-
sis of distributed firewall policies. IEEE J. Sel. Areas Commun. 23(10), 2069–2084
(2005)

http://www.netfilter.org/projects/iptables/index.html
http://www.netfilter.org/projects/iptables/index.html

284 U. Neville and S.N. Foley

5. Birkhoff, G.: Lattice Theory. American Mathemical Society Colloquium
Publications, vol. XXV, 3rd edn. American Mathemical Society, Providence (1967)

6. Brucker, A.D., Brügger, L., Wolff, B.: Formal firewall conformance testing: an
application of test and proof techniques. Softw. Test. Verif. Reliab. 25(1), 34–71
(2015)

7. Cotton, M., Vegoda, L.: Special Use IPv4 Addresses. RFC 5735, January 2010
8. Cuppens, F., Cuppens-Boulahia, N., Garćıa-Alfaro, J.: Detection and removal of

firewall misconfiguration. In: Proceedings of the 2005 IASTED International Con-
ference on Communication, Network and Information Security, vol. 1, pp. 154–162
(2005)

9. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A formal approach to
specify and deploy a network security policy. In: Dimitrakos, T., Martinelli, F.
(eds.) Formal Aspects in Security and Trust. IFIP, vol. 173, pp. 203–218. Springer,
New York (2005)

10. Fitzgerald, W.M., Neville, U., Foley, S.N.: MASON: mobile autonomic security for
network access controls. J. Inf. Secur. Appl. (JISA) 18(1), 14–29 (2013)

11. Foley, S.N.: The specification and implementation of commercial security require-
ments including dynamic segregation of duties. In: ACM Conference on Computer
and Communications Security, pp. 125–134 (1997)

12. Foley, S.N., Neville, U.: A firewall algebra for openstack. In: 2015 IEEE Confer-
ence on Communications and Network Security, CNS 2015, Florence, Italy, 28–30
September 2015, pp. 541–549 (2015)

13. Hari, A., Suri, S., Parulkar, G.: Detecting and resolving packet filter conflicts.
In: Proceedings of the IEEE Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 3, pp. 1203–1212. IEEE (2000)

14. Jacob, J.L.: The varieties of refinement. In: Morris, J.M., Shaw, R.C. (eds.) Pro-
ceedings of the 4th Refinement Workshop, pp. 441–455. Springer, Heidelberg (1991)

15. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. 26(2), 214–260 (2001)

16. Jarraya, Y., Eghtesadi, A., Debbabi, M., Zhang, Y., Pourzandi, M.: Cloud calculus:
security verification in elastic cloud computing platform. In: 2012 International
Conference on Collaboration Technologies and Systems (CTS), pp. 447–454. IEEE
(2012)

17. Jeffrey, A., Samak, T.: Model checking firewall policy configurations. In: IEEE
International Symposium on Policies for Distributed Systems and Networks, POL-
ICY 2009, pp. 60–67. IEEE (2009)

18. Levine, L.: (Lemma 3, Example 6.) Algebraic Combinatorics, Lecture 8, March
2011. http://www.math.cornell.edu/∼levine/18.312/alg-comb-lecture-8.pdf

19. Spivey, J.M.: The Z Notation: A Reference Manual. Series in Computer Science,
2nd edn. Prentice Hall International (1992)

20. Yuan, L., Chen, H., Mai, J., Chuah, C., Su, Z., Mohapatra, P.: Fireman: a toolkit
for firewall modeling and analysis. In: 2006 IEEE Symposium on Security and
Privacy, pages 15, pp. 199–213. IEEE (2006)

21. Zhao, H., Bellovin, S.M.: Policy algebras for hybrid firewalls. Technical report
CUCS-017-07, Department of Computer Science, Columbia University, March 2007

http://www.math.cornell.edu/~levine/18.312/alg-comb-lecture-8.pdf

	Reasoning About Firewall Policies Through Refinement and Composition
	1 Introduction
	2 A Theory of Adjacency
	2.1 The Adjacency Specification

	3 Filter Condition Attribute Datatypes
	3.1 The Adjacency Datatype
	3.2 The Duplet Datatype
	3.3 The Stateful/Protocol Datatype

	4 The FW1 Policy Algebra
	4.1 Constructing Firewall Policies

	5 Reasoning About Policies in Practice
	5.1 Anomaly Analysis
	5.2 Standards Compliance

	6 Encoding and Evaluating Iptables Policies
	7 Related Work
	8 Conclusion
	References

