Skip to main content

Effective Comparison Features for Pedestrian Detection

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9730))

Included in the following conference series:

  • 2758 Accesses

Abstract

For real applications of pedestrian detection, both detection speed and detection accuracy are important. In this paper we propose a detector based on effective comparison features (ECFs) for simultaneously improving detection accuracy and speed. ECFs are defined as the features helping to improve actual performance. Using only these ECFs as feature candidates for the split nodes of decision trees, our detector can achieve accurate results. As an additional benefit, detection speed is improved by earlier rejection of negative samples. Experiments are conducted using well-known benchmark datasets for pedestrian detection. The experimental results of our ECF detector show that our detection speed is 1–2 orders of magnitude faster than the speed of state-of-the-art algorithms, with comparable detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L., Ihaka, R.: Nonlinear discriminant analysis via scaling and ace technical report. Univ. California, Berkeley (1984)

    Google Scholar 

  2. Cai, Z., Saberian, M., Vasconcelos, N.: Learning complexity-aware cascades for deep pedestrian detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3361–3369 (2015)

    Google Scholar 

  3. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Dollár, P.: Caltech Pedestrian Detection Benchmark. http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/

  5. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  6. Dollár, P., Belongie, S., Perona, P.: The fastest pedestrian detector in the west. In: BMVC, vol. 2, p. 7. Citeseer (2010)

    Google Scholar 

  7. Dollár, P., Welinder, P., Perona, P.: Cascaded pose regression. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1078–1085. IEEE (2010)

    Google Scholar 

  8. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3d object recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 998–1005. IEEE (2010)

    Google Scholar 

  9. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2188–2202 (2011)

    Article  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., Tibshirani, R.: The Elements of Statistical Learning, vol. 2. Springer, New York (2009)

    Book  MATH  Google Scholar 

  11. Kong, K.K., Hong, K.S.: Design of coupled strong classifiers in adaboost framework and its application to pedestrian detection. Pattern Recogn. Lett. 68, 63–69 (2015)

    Article  Google Scholar 

  12. Nam, W., Dollar, P., Han, J.H.: Local decorrelation for improved pedestrian detection. In: Advances in Neural Information Processing Systems, pp. 424–432 (2014)

    Google Scholar 

  13. Paisitkriangkrai, S., Shen, C., van den Hengel, A.: Strengthening the effectiveness of pedestrian detection with spatially pooled features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 546–561. Springer, Heidelberg (2014)

    Google Scholar 

  14. Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., Moore, R., Kohli, P., Criminisi, A., Kipman, A., et al.: Efficient human pose estimation from single depth images. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013)

    Article  Google Scholar 

  15. Tian, Y., Luo, P., Wang, X., Tang, X.: Deep learning strong parts for pedestrian detection. In: Proceedings of IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  16. Yang, B., Yan, J., Li, S.: Convolutional channel features. In: Proceedings of IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  17. Yuan, J., Luo, J., Wu, Y.: Mining compositional features for boosting. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  18. Zhang, S., Benenson, R., Schiele, B.: Filtered channel features for pedestrian detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1751–1760. IEEE (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0016669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Sang Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kong, KK., Lee, JW., Hong, KS. (2016). Effective Comparison Features for Pedestrian Detection. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41501-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41500-0

  • Online ISBN: 978-3-319-41501-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics