Skip to main content

Markovian Approach to Automatic Annotation of Breast Mass Spicules Using an A Contrario Model

  • Conference paper
  • First Online:
Breast Imaging (IWDM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9699))

Included in the following conference series:

  • 1839 Accesses

Abstract

In this paper, we propose a new method for automatic extraction of breast mass spicules in 2-D mammography. Spicules are abnormal curvilinear structures which characterize most of malignant breast masses. They are important features for discrimination between benign and malignant masses. In our method, the curvilinear structures are first approximated by line segments derived from localized Radon transforms; then, the Markov random field is used to take into account the local interactions via the contextual information between these segments. Finally, detection of the curvilinear structures that most likely correspond to spicules is performed using an a contrario framework. Validation of the approach was performed on a large dataset of spiculated masses which were selected from a public digital database; the results showed a high agreement with manually annotated mammograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IARC, Globocan: observation of strains: Estimated cancer incidence, mortality and prevalence worldwide in 2012 (2011). http://globocan.iarc.fr/Default.aspx

  2. Elter, M., Horsch, A.: CADx of mammographic masses and clustered microcalcifications: a review. Med. Phys. 36(6), 2052–2068 (2009)

    Article  Google Scholar 

  3. Liberman, L., Abramson, A.F., Squires, F.B., Glassman, J.R., Morris, E.A., Dershaw, D.D.: The breast imaging reporting and data system: positive predictive value of mammographic features and final assessment categories AJR. Am. J. Roentgenol. 171(1), 35–40 (1998)

    Article  Google Scholar 

  4. Kegelmeyer, W.P., Pruneda, J.M., Bourland, P.D., Hillis, A., Riggs, M.W., Nipper, M.L.: Computer-aided mammographic screening for spiculated lesions. Radiology 191(2), 331–337 (1994)

    Article  Google Scholar 

  5. Karssemeijer, N., te Brake, G.M.: Detection of stellate distortions in mammograms. IEEE Trans. Med. Imaging 15(5), 611–619 (1996)

    Article  Google Scholar 

  6. Liu, S., Babbs, C.F., Delp, E.J.: Multiresolution detection of spiculated lesions in digital mammograms. IEEE Trans. Image Process. 10(6), 874–884 (2001)

    Article  MATH  Google Scholar 

  7. Zwiggelaar, R., Astley, S.M., Boggis, C.R.M., Taylor, C.J.: Linear structures in mammographic images: detection and classification. IEEE Trans. Med. Imaging 23(9), 1077–1086 (2004)

    Article  Google Scholar 

  8. Kobatake, H., Yoshinaga, Y.: Detection of spicules on mammogram based on skeleton analysis. IEEE Trans. Med. Imaging 15(3), 235–245 (1996)

    Article  Google Scholar 

  9. Muralidhar, G.S., Bovik, A.C., Giese, J.D., Sampat, M.P., Whitman, G.J., Haygood, T.M., Stephens, T.W., Markey, M.K.: Snakules: a model-based active contour algorithm for the annotation of spicules on mammography. IEEE Trans. Med. Imaging 29(10), 1768–1780 (2010)

    Article  Google Scholar 

  10. Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1568–1579 (2005)

    Article  MATH  Google Scholar 

  11. Krylov, V.A., Nelson, J.D.B.: Stochastic extraction of elongated curvilinear structures with applications. IEEE Trans. Image Process. 23(12), 5360–5373 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gao, R., Bischof, W.F.: Detection of linear structures in remote-sensed images. In: Kamel, M., Campilho, A. (eds.) ICIAR 2009. LNCS, vol. 5627, pp. 896–905. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. Int. J. Comput. Vis. 40(1), 7–23 (2000)

    Article  MATH  Google Scholar 

  14. Palma, G., Muller, S., Bloch, I., Iordache, R.: Convergence areas detection in digital breast tomosynthesis volumes using a contrario modeling. In: SPIE Symposium on Medical Imaging: Computer-Aided Diagnosis, Lake Buena Vista, FL, USA (2009)

    Google Scholar 

  15. Copeland, A.C., Ravichandran, G., Trivedi, M.M.: Localized radon transform-based detection of ship wakes in SAR images. IEEE Trans. Geosci. Remote Sens. 33(1), 33–45 (1995)

    Article  Google Scholar 

  16. Goussard, Y., Idier, J., De Cesare, A.: Unsupervised image segmentation using a telegraph parameterization of Pickard random fields, vol. 4, pp. 2777–2780. IEEE, Munich (1997)

    Google Scholar 

  17. Idier, J., Goussard, Y., Ridolfi, A.: Unsupervised image segmentation using a telegraph parameterization of Pickard random fields. In: Moore, M., Guyon, X. (eds.) CRM series in Statistics, pp. 115–140. Springer, New York (2000)

    Google Scholar 

  18. Goubalan, S.R.T.J., et al.: Optimization of the dictionary size selection: an efficient combination of K-SVD and PCA to denoise and enhance digital mammography contrast. In: Martin-Gonzalez, A., et al. (eds.) ISICS 2016. CCIS, vol. 597, pp. 1–15. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30447-2_1

    Chapter  Google Scholar 

  19. Heath, M., Bowyer, K., Kopans, D., Kegelmeyer Jr., P., Moore, R., Chang, K., Munishkumaran, S.: Current status of the digital database for screening mammography. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L. (eds.) Digital Mammography, pp. 457–460. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Zwiggelaar, R., Parr, T.C., Schumm, J.E., Hutt, I.W., Taylor, C.J., Astley, S.M., Boggis, C.R.M.: Model-based detection of spiculated lesions in mammograms. Med. Image Anal. 3(1), 39–62 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Mitacs and Campus France (Research Grant IT5501). The authors wish to thank Dr. Jérome Idier and Dr. Andrea Ridolfi for the practical implementation of the PRF-based segmentation algorithm and Dr. Stéphane Bedwani for its contribution of the realization of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sègbédji R. T. J. Goubalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Goubalan, S.R.T.J., Goussard, Y., Maaref, H. (2016). Markovian Approach to Automatic Annotation of Breast Mass Spicules Using an A Contrario Model. In: Tingberg, A., Lång, K., Timberg, P. (eds) Breast Imaging. IWDM 2016. Lecture Notes in Computer Science(), vol 9699. Springer, Cham. https://doi.org/10.1007/978-3-319-41546-8_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41546-8_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41545-1

  • Online ISBN: 978-3-319-41546-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics