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Abstract. We introduce and study incentive equilibria for multi-player mean-
payoff games. Incentive equilibria generalise well-studied solution concepts such
as Nash equilibria and leader equilibria (also known as Stackelberg equilibria).
Recall that a strategy profile is a Nash equilibrium if no player can improve his
payoff by changing his strategy unilaterally. In the setting of incentive and leader
equilibria, there is a distinguished player—called the leader—who can assign
strategies to all other players, referred to as her followers. A strategy profile is a
leader strategy profile if no player, except for the leader, can improve his payoff
by changing his strategy unilaterally, and a leader equilibrium is a leader strategy
profile with a maximal return for the leader. In the proposed case of incentive
equilibria, the leader can additionally influence the behaviour of her followers
by transferring parts of her payoff to her followers. The ability to incentivise her
followers provides the leader with more freedom in selecting strategy profiles,
and we show that this can indeed improve the leader’s payoff in such games.
The key fundamental result of the paper is the existence of incentive equilibria
in mean-payoff games. We further show that the decision problem related to con-
structing incentive equilibria is NP-complete. On a positive note, we show that,
when the number of players is fixed, the complexity of the problem falls in the
same class as two-player mean-payoff games. We also present an implementation
of the proposed algorithms, and discuss experimental results that demonstrate the
feasibility of the analysis of medium sized games.

1 Introduction

The classical mean-payoff games [27,7] are two-player zero-sum games that are played
on weighted finite di-graphs, where two players—Max and Min—take turn to move a
token along the edges of the graph to jointly construct an infinite play. The objectives of
the players Max and Min are to respectively maximise and minimise the limit average
reward associated with the play. Mean-payoff games enjoy a special status in verifica-
tion, since µ-calculus model checking and parity games can be reduced in polynomial-
time to solving mean-payoff games. Mean-payoff objectives can also be considered as
quantitative extensions [13,11] of classical Büchi objectives, where we are interested in
the limit-average share of occurrences of accepting states rather than merely in whether
or not infinitely many accepting states occur. For a broader discussion on quantitative
verification, in general, and the transition from the classical qualitative to the modern
quantitative interpretation of deterministic Büchi automata, we refer the reader to Hen-
zinger’s survey on quantiative reactive modelling and verification [13].
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We focus on multi-player extension of mean-payoff games where a finite number
of players control various vertices and move a token along the edges to collectively
produce an infinite run. There is a player-specific reward function that, for every edge
of the graph, gives an immediate reward to each player. The payoff to a player associated
with a play is the limit average of the rewards in the individual moves. The most natural
question related to the multi-player game setting is to find an optimal ‘stable’ strategy
profile (a set of strategies, one for each player). Broadly speaking, a strategy profile is
stable, if no player has an incentive to deviate from it. Nash equilibria [17] and leader
equilibria [28,11] (also known as Stackelberg equilibria) are the most common notions
of stable strategy profiles for multi-player games. A strategy profile is called a Nash
equilibrium if no player can improve his payoff by unilaterally changing his strategy. In
a setting where we have a distinguished player (called the leader) who is able to suggest
a strategy profile to other players (called followers), a strategy profile is stable if no
follower can improve his payoff by unilaterally deviating from the profile. A leader
equilibrium is a stable strategy profile that maximises the reward for the leader.
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Fig. 1. Incentive equilibrium beats leader equilibrium beats
Nash equilibrium.

In this paper, we intro-
duce and study a novel no-
tion of stable strategy pro-
files for multi-player mean-
payoff games that we call
incentive Stackelberg equi-
libria (or incentive equilib-
ria for short). In this setting, the leader has more powerful strategies, where she not only
puts forward strategies that describe how the players move, but also gives non-negative
incentives to the followers for compliance. These incentives are then added to the over-
all rewards the respective follower would receive in each move of the play, and deduced
from the overall reward of the leader. Like for leader equilibria, a strategy profile is
stable if no follower has an incentive to deviate. An incentive equilibrium is a stable
strategy profile with maximal reward for the leader.

Using incentive equilibria has various natural justifications. The techniques we dis-
cussed here can be applied where distributed development of a system is considered.
That is, when several rational components interact among themselves along with a ra-
tional controller and they try to optimise their individual objectives and specifications.
Our techniques can be applied to maximise utility of a central controller while also
complying with individual component specifications. Transferring utilities is also quite
natural where the payoffs on the edges directly translate to the gains incurred by indi-
vidual components. These techniques can also be used to maximise social optima where
rational controller follow the objective of maximising joint utility.

We now discuss two simple examples that exemplify the role that incentives can
play to achieve good stable solutions of multi-player mean-payoff games.

Example 1. Consider the multi-player mean-payoff game shown in Figure 1. Here we
have three players: Player 1, Player 2 (the leader), and Player 3. The vertex labelled 1
is controlled by Player 1, while the vertex labelled 2 is controlled by Player 2. All
other vertices are controlled by Player 3. We further annotate the rewards of various
players on the edges of the graph by giving a triple, where the reward of the players 1,
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Fig. 2. Incentive equilibrium gives much better system utilisation.

2, and 3 are shown in that order. We omit the labels when the rewards of all players
are 0. An incentive equilibrium would be given by (a strategy profile leading to) the
play 〈1, 2, 3ω〉, where the leader pays an incentive of 1 to Player 1 for each step and
0 to Player 3. By doing this, she secures a payoff of 8 for herself. The reward for the
players 1 and 3 in this incentive equilibrium are each 1 and −9, respectively. A leader
equilibrium would result in the play 〈1, 2, 5ω〉 (with rewards) of 1 for Player 1 and the
leader and −2 for Player 3: when the leader cannot pay any incentive to Player 1, then
the move from Vertex 2 to Vertex 3 will not be part of a stable strategy. The only Nash
equilibrium in this game would result in the play 〈1, 4ω〉with the rewards of 1 for Player
1, 0 for the leader, and −1 for Player 3. This example therefore shows how the leader
can benefit from her additional choices in leader and incentive equilibria. ut

Example 2. Consider the multi-player mean-payoff game shown in the Figure 2 with
five players—Player 1 (or: leader) and Player 2 to 5 (followers). For i ∈ {2, 3, 4, 5},
Player i controls the vertex labelled i in the game and gets a reward of 1 whenever
token is at vertex i. (To keep the rewards on the edges, one could encode this by giving
this reward whenever vertex i is entered.) Player 1 gets a reward of 1 in all of these
vertices. The payoff of all other players is 0 in all other cases. Notice that the only play
defined by Nash or leader equilibria in this example is 〈(1, 5, 6)ω〉, which provides a
payoff of 1

3 to Player 1 and Player 2, and a payoff of 0 to all other players. For incentive
equilibria, however, the leader can give an incentive of 1

12 to all followers when they
follow the play 〈(1, 2, 3, 4)ω〉. It is easy to see that such a strategy profile is incentive
stable. The leader will then receive a payoff of 2

3 , i.e., her payoff from the cycle, 1,
minus the incentives given to the other players, 4 · 1

12 . All other players receive a payoff
of 1

3 , consisting of the payoff from the cycle, 1
4 , plus the incentive they receive from the

leader, 1
12 . Notice that this payoff is not only better from the leader’s point-of-view, the

other players are also better off in this equilibrium. ut

In both examples, we saw that the incentive equilibria are strictly better than Nash
and leader equilibria. It is not a coincidence—note that leader reward from any Nash
equilibrium cannot be greater than her reward from any leader equilibrium, as in the
case of leader strategy profiles, leader can select from a wider range of strategy profiles.
Thus, if compared to a Nash equilibrium, a leader equilibrium can only be superior
w.r.t. the leader reward. Similarly, a leader equilibrium cannot beat an incentive equi-
librium, as here also, leader can select from a wider range of strategy profiles (‘leader



stable’ strategy profiles can be viewed as an ‘incentive stable’ strategy profiles with 0
incentives). It again implies that leader reward from any leader equilibrium cannot be
greater than her reward from any incentive equilibrium.

Related Work. Ummels and Wojtczak [26,25] considered Nash equilibria for mean-
payoff games and showed that the decision problem of finding a Nash equilibria is NP-
complete for pure (not allowing randomisation) strategy profiles, while the problem is
undecidable for arbitrary randomised strategies. Gupta and Schewe [11] have extended
these results to leader equilibria. The undecidability result of [26] for Nash-equilibria
in arbitrary randomised strategies can be easily extended to leader equilibria. For this
reason, we focus on non-randomised strategies throughout this paper.

Leader equilibria were introduced by von Stackelberg [28] and were further studied
in [29]. The strategy profiles we study here are inspired from [30] and are studied in
detail for infinite games in [11]. Incentive equilibria have recently been introduced for
bi-matrix games [12], but have, to the best of our knowledge, not been used in infi-
nite games. Two-player mean-payoff games were first studied in [9] and were shown
to be positionally determined. They can be solved in pseudo-polynomial time [27,6],
smoothed polynomial time [3], PPAD [10] and randomised subexponential [2] time.
Their decision problem is also known to be in UP∩co-UP [14,27].

Contributions. The key contribution of the paper is the concept of incentive equilib-
ria to system analysis in general and to multi-player mean-payoff games in particular.
We show that the complexity of finding incentive equilibria is same as that for finding
leader equilibria [11] for multi-player mean-payoff games: it is NP-complete in general,
but, for a fixed number of players, it is in the same complexity class as solving two-
player mean-payoff games (2MPGs). In other words, solving two-player mean-payoff
games is the most expensive step involved. We have implemented an efficient version
of the optimal strategy improvement algorithm from [22] as a backbone, and equipped
it with a logarithmic search to expand it from the qualitative evaluation (finding mean
partitions) of mean-payoff games to their quantitative evaluation. We construct incen-
tive equilibria by implementing a constraint system that gives necessary and sufficient
conditions for a strategy profile to be (1) stable and (2) provide optimal leader return
among them. The evaluation of the constraint system involves evaluating a bounded
number of calls to the linear programming solver.

The contribution of the paper is therefore two-fold—first to conceptualise incentive
equilibria in multi-player mean-payoff games, and second to present a tool deriving
optimal return for the leader by evaluating a number of multi-player games.

Organisation. We begin the technical presentation by formally introducing incen-
tive equilibria for multi-player mean-payoff games. In Section 3 we present details re-
lated to existence and construction of incentive equilibrium and declare the complexity
of finding incentive equilibrium. In Section 4 we discuss details of our implementation
of constructing incentive equilibrium before concluding in Section 5.

2 Incentive equilibrium

We introduce the concept of incentive equilibria for multi-player mean-payoff games.
These games are played among multiple players on a multi-weighted finite directed



graph arena where a distinguished player, called the leader, is able to put forward a
strategy profile (a strategy each for all players). She will follow the strategy she as-
signed for herself, while all other players, called her followers, will comply with the
strategy she suggested, unless they benefit from unilateral deviation. The leader is fur-
ther allowed to incentivise the behaviour of her followers by sharing her payoff with
them, in order to make compliance with the strategy she has put forward sufficiently
attractive. This, in turn, may improve the leaders payoff. Before we define incentive
equilibra, let us recall a few key definitions.

Definition 1 (Multi-player Mean-Payoff Game Arena). A multi-player mean-payoff
game (MMPG) arena G is a tuple (P, V, (Vp)p∈P , v0, E, (rp)p∈P ) where

– P is a finite set of players with a distinguished leader player l ∈ P ,
– V is a finite set of vertices with a distinguished initial vertex v0 ∈ V ,
– (Vp)p∈P is a partition of V characterising vertices controlled by players,
– E ⊆ V × V is a set edges s.t. for all v ∈ V there is v′ ∈ V with (v, v′)∈E,
– (rp)p∈P is a family of reward functions rp : E → Q, that for each player p ∈ P ,

assigns reward for player p associated with that edge.

A finite play π = 〈v0, v1, . . . , vn〉 of the game G is a sequence of vertices such that
v0 is the initial vertex, and for every 0 ≤ i < n, we have, (vi, vi+1) ∈ E. An infinite
play is defined in an analogous manner. A multi-player mean-payoff game is played on
a game arena G among various players by moving a token along the edges of the arena.
The game begins by placing a token on the initial vertex. Each time the token is on the
vertex controlled by a player p ∈ P , the player p chooses an outgoing edge and moves
the token along this edge. The game continues in this fashion forever, and the players
thus construct an infinite play of the game. The (raw) payoff rp(π) of a player p ∈ P
associated with a play π = 〈v0, v1, . . .〉 is the limit average reward of the path, given as
rp(π)

def
= lim infn→∞

1
n

∑n−1
i=0 rp

(
(vi, vi+1)

)
. We refer to this value as the raw payoff

of the player p to distinguish it from the payoff for the player that also includes the
incentive given to the player by the leader.

A strategy of a player is a recipe for the player to choose the successor vertex. It
is given as a function σp : V ∗Vp → V such that σp(π) is defined for a finite play
〈v0, . . . , vn〉 when vn ∈ Vp and it is such that (vn, σp(π)) ∈ E. A family of strategies
σ = (σp)p∈P is called a strategy profile. Given a strategy profile σ, we write σ(p) for
the strategy of player p ∈ P in σ. A strategy profile σ defines a unique play πσ , and
therefore a raw payoff rp(σ) = rp(πσ) for each player p. We write ΣGp for the set of
strategy of player p ∈ P and ΠG for the set of strategy profiles in a game arena G.
When the game arena is clear from the context, we omit it from the superscript.

For a strategy profile σ, a player p ∈ P , and a strategy σ′ of p, we write σp,σ′ for
the strategy profile σ′ such that σ′(p) = σ′ and σ′(p′) = σ(p′) for all p′ ∈ P \ {p}. We
are now in a position to formally define Nash and leader (aka Stackelberg) equilibra.

Definition 2 (Nash Equilibria). A strategy profile σ is a Nash equilibrium if no player
would gain from unilateral deviation, i.e., for all players p ∈ P we have rp(σ) ≥
rp(σp,σ′) for all σ′ ∈ Σp.



Definition 3 (Leader Equilibrium). A strategy profile σ is a leader stratey profile if
no player, except for the leader, would gain from unilateral deviation, i.e., for all p ∈
P\ {l} we have rp(σ) ≥ rp(σp,σ′) for all σ′ ∈ Σp. A leader equilibrium is a maximal
(w.r.t. leader’s raw payoff) leader strategy profile.

Incentive Equilibrium. We next define an incentive strategy profile as a strategy profile
which satisfies the stability requirements of the leader equilibria and allows the leader
to give incentives to the followers. We refer to an optimal strategy profile in this class of
strategy profiles that provides maximal reward to the leader as an incentive equilibrium.

An incentive to a player p is a function ιp:V
∗Vp→R≥0 from the set of histo-

ries to incentives. Incentives can be extended to infinite play π = 〈v0, v1, . . .〉 in the
usual mean-payoff fashion: ιp(π)

def
= lim infn→∞

1
n

∑n−1
i=0 ιp(v0 . . . vn−1). The over-

all payoff ρp(π) to a follower in run π is the raw payoff plus all incentives, ρp(π)
def
=

rp(π) + ιp(π), while the overall payoff of the leader ρl(π) is her raw payoff after de-
ducting all incentives, ρl(π)

def
= rl(π)−

∑
p∈Pr{l} ιp(π).

We extend the notion of a strategy profile in the presence of incentives as a pair
(σ, ι), where σ is a strategy profile assigned by the leader, in which the leader pays an
incentive given by the incentive profile ι = (ιp)p∈Pr{l}. We write ιp for the incentive
for player p ∈ P \ {l}. We write ιp(σ) for the incentive to player p for the unique run
πσ under incentive profile ι. In any incentive strategy profile (σ, ι), no player but the
leader may benefit from deviation. An optimal strategy profile among this class would
form an incentive equilibrium.

Definition 4 (Incentive Equilibria). A strategy profile (σ, ι) is an incentive strategy
profile, if no follower can improve his overall payoff from a unilateral deviation, i.e., for
all players p ∈ Pr{l}we have that rp(σ)+ιp(σ) ≥ rp(σp,σ′)+ιp(σp,σ′) for all σ′ ∈ Σp.
An incentive profile (σ, ι) is an incentive equilibrium if the leader’s total payoff for this
profile is maximal among all incentive strategy profiles. I.e., for all (σ′, ι′) we have that
rl(σ)−

∑
p∈Pr{l} ιp(σ) ≥ rl(σ

′)−
∑
p∈Pr{l} ι

′
p(σ
′).

For a given ε > 0 we call an incentive strategy profile (σ, ι) an ε-incentive equilib-
rium if the leader’s payoff is at most ε worse than that of any other profile, i.e., for all
profiles (σ′, ι′) we have that rl(σ)−

∑
p∈Pr{l} ιp(σ) ≥ rl(σ

′)−
∑
p∈Pr{l} ι

′
p(σ
′)−ε.

Incentive equilibria vs. leader equilibria. We call an incentive strategy profile a leader
strategy profile if all incentives are constant 0 functions, and a Nash strategy profile if, in
addition, σ is also a Nash equilibrium. We write SP, ISP, LSP, and Nash SP for the set of
strategy profiles, incentive strategy profiles, leader strategy profiles, and Nash strategy
profiles. It is clear that Nash SP ⊆ LSP ⊆ ISP ⊆ SP. This observation, together with
Example 1yield the following result.

Theorem 1. Incentive equilibria do not provide smaller return than leader equilibria,
and leader equilibria do not provide smaller return than Nash equilibria. Moreover,
there are games for which the leader reward from three equilibria are different.



3 Existence and construction

This section is dedicated to the existence and construction of incentive equilibria. We
first introduce a canonical class of incentive strategy profiles—the perfectly-incentivised
strategy profiles (PSPs)—that corresponds to the Stackelberg version of the classic
subgame perfection. Keep in mind that not all perfectly-incentivised strategy profiles
(PSPs) are valid incentive strategy profiles (ISPs). On the other hand, we show that ev-
ery ISP has a corresponding PSP (which is also an ISP) with the same leader reward.
Thanks to this result, in order to construct incentive equilibrium it suffices to consider
PSPs that are also ISPs.

Further, we show that, for PSPs that are ISPs, it suffices to find a maximum in a well
behaved class of strategy profiles: strategy profiles where every edge has a limit share
of the run—by showing that the supremum of general strategies cannot be higher than
the supremum of these well behaved ones. We then show how to construct well behaved
PSPs that are ISPs based on a family of constraint systems that depend on the occuring
and recurring vertices on the play. At the same time, we show that no general ISP that
defines a play with this set of occuring and recurrent vertices can have a higher value.
The set of occuring and recurrent vertices can be guessed and the respective constraint
system can be build and solved in polynomial time, which also provides inclusion of
the related decision problem in NP.

3.1 Perfectly-incentivised strategy profiles

We define a canonical form of an incentive equilibrium with this play that we call
perfectly-incentivised strategy profiles (PSP). In a PSP, a deviator (a deviating follower)
is punished, and the leader incentivises all other followers to collude against the de-
viator. While the larger set of strategies and plays that define them (when compared to
Nash and leader equilibria) lead to a better value, this incentive scheme leads to a higher
stability: the games are subgame perfect relative to the leader.

Definition 5 (Subgame Perfect). A strategy profile (σ, ι) is a subgame perfect incen-
tive strategy profile, if every reachable subgame is also an incentive strategy profile.

This term adjusts the classic notion of subgame perfect equilibria to our setting. Sub-
game perfection refers to believable threats: broadly speaking, when a player threatens
to play an action that harms herself, then it may happen that the other players do not
believe this player and therefore deviate. In a subgame perfect Nash equilibrium, it is
therefore required that the subgame started on each history also forms a Nash equilib-
rium. Note that the leader is allowed to benefit from deviation in our setting.

The means to obtain subgame perfection after deviation is to make all players harm
the most recent deviator. Thus, we essentially resort to a two-player game. For a multi-
player mean-payoff game G, we define, for each follower p, the two-player mean-payoff
game (2MPG) Gp where p keeps his reward function, while all other players have the
same antagonistic reward −rp. Two-player mean-payoff games are memoryless deter-
mined, such that every vertex v has a value, which we denote by rp(v). This value
clearly defines a minimal payoff of a follower: when he passes by a vertex in a play,
then he cannot expect an outcome below rp(v), as he would otherwise deviate.



PSP strategy profiles are in the tradition of reward and punish strategy profiles [11].
In any ’reward and punish’ strategy profile, the leader facilitates the power of all re-
maining followers to punish a deviator. If a player p chooses to deviate from the strategy
profile at history h, the game would turn into a two-player game, where all the other
followers and the leader forsake their own interests, and jointly try to ‘punish’ p. That
is, player p may still try to maximise his reward and his objective remains exactly the
same, but the rewards of the rest of the players have changed to negative of the reward of
player p. As they form a coalition with the joint objective to harm p, this is an ordinary
two-player mean-payoff game that starts at the vertex last(h).

For a strategy profile σ and a history h, we call h a deviating history, if it is not a
prefix of πσ . We denote by dev(h, σ) the last player p, who has deviated from his or her
strategy σp on a deviating history h.

Definition 6 (Perfectly-Incentivised Strategy Profile). A perfectly-incentivised strat-
egy profile is defined as a strategy profile (PSP) (σ, ι) with the following properties. For
all prefixes h and h′ of πσ and for all followers p, it holds that ιp(h) = ιp(h

′). We also
refer to this value by ιp. For deviator histories h′, the incentive ιp(h′) is 0 except for the
following cases. On every deviating history h with deviating player p = dev(h, σ), the
player p′ who owns the vertex v = last(h) follows the strategy from the 2MPG Gp. If,
under this strategy, player p′ selects the successor v′ at a vertex v in the 2MPG Gp (and
thus σp′(h) = v′), p′ is a follower, and p′ 6= p, then player p′ receives an incentive,
such that rp′(v, v′) + ιp′(h · v′) = rmax + 1.

Note that, technically, the leader punishes herself in this definition. This is only to
keep definitions simple; she is allowed to have an incentive to deviate, and the subgame
perfection does not impose a criterion upon her. Note also that a PSP is not necesarily
an incentive strategy profile, as it does not guarantee anything about πσ . The following
theorem states the importance of PSPs in constructing incentive equilibrium.

Theorem 2. Let (σ, ι) be an ISP that defines a play πσ . Then we can define a PSP
(σ, ι), which is also an ISP, with the same reward that defines the same play.

The proof of this theorem follows from Lemma 1 and Lemma 2.

Lemma 1. Let (σ′, ι′) be a strategy profile that defines a play πσ′ , which contains
precisely the reachable vertices Q. Let (σ′, ι′) satisfy that, for all followers p ∈ P \ {l}
and all vertices v ∈ Q∩Vp owned by p we have that ιp(σ′)+ rp(σ′) ≥ rp(v). Then we
can define a PSP (σ, ι) with the same reward, which defines the same play.

Proof. We note that a PSP (σ, ι) is fully defined by the play πσ and the ι restricted to
the prefixes of πσ . We now define the PSP (σ, ι) with the following property: πσ = πσ′ ,
that is the play of the PSP equals the play defined by the ISP we started with. For all
followers p and all prefixes h of πσ , we have ιp(h) = ι′p(σ). It is obvious that (σ′, ι′)
and (σ, ι) yield the same reward for all followers and the same reward for the leader. We
now assume for contradiction that the resulting PSP is not an incentive strategy profile.
If this is the case, then a follower p must benefit from deviation at some history h. Let
us start with the case that h is a deviator history. In this case, the reward for p upon not



deviating is rmax + 1, while it is the outcome of some game upon deviation, which is
clearly bounded by rmax.

We now turn to the case that h is not a deviator history, and therefore a prefix of πσ .
Let p be the owner of v = last(h). If p is the leader, we have nothing to show. If p is a
follower and does not have an incentive to deviate in (σ, ι), we have nothing to show.
If p is a follower and has an incentive to deviate in (σ, ι), we note that his payoff after
deviation would be bounded from above by rp(v). Thus, he does not have an incentive
to deviate (contradiction). ut

Lemma 2. Let (σ, ι) be an ISP that defines a play πσ , which contains precisely the
vertices Q. Then, for all followers p ∈ P \ {l} and all vertices v ∈ Q∩ Vp owned by p,
we have that ιp(σ′) + rp(σ

′) ≥ rp(v).

Proof. Assume that this is not the case for a follower p and a vertex v ∈ Q owned by
p. Then p would benefit upon deviating when visiting v. ut

3.2 Existence and construction of incentive equilibria

We say that a strategy profile σ is well-behaved if in the resulting play πσ , the frequency
(ratio) of occurrence of every edge of the game arena occurs has a limit, i.e, each edge
here occurs with a limit probability (the limes inferior and superior of the share of its
occurrence on πσ are equal). Such notion of well-behaved strategy profiles were also
defined in [11] for the case of leader equilibria. We first show how to construct optimal
ISPs among well behaved PSPs, and then show that no ISPs give a better payoff for
leader.

Characterisation of a well-behaved PSPs. Let σ is a well-behaved perfectly-incentivised
strategy profile and let Q be the set of vertices visited in πσ and S ⊆ Q be the set of
vertices that are visited infinitely often (note that S is strongly connected). Let p(s,t) be
the limit ratio (frequency) of occurrence of an edge (s, t) ∈ E ∩S ×S in πσ and let pv
be the for the limit ratio of each vertex v ∈ S.

Thanks to the proof of Lemma 1, the following constraint system (linear program)
characterises the necessary and sufficient conditions for the well-behaved perfectly-
incentivised strategy profile σ to be an ISP.

1. pv = 0 if v ∈ V r S and pv ≥ 0 if v ∈ S.
2. pe = 0 if e ∈ E r S × S and pe ≥ 0 if e ∈ E ∩ S × S
3.
∑
v∈V pv = 1

4. ps =
∑

(s,t)∈E p(s,t) for all s ∈ S and pt =
∑

(s,t)∈E p(s,t) for all t ∈ S
5. ιp +

∑
e∈E perp(e) ≥ maxv∈Q(rp(v)) where rp(v) is the value at vertex v in the

2MPG Gp characterising minimum payoff expected by player p.

The constraints presented above are quite self-explanatory. Constraints 1 and 2 state
that the limit ratio of occurrence of a vertex and edge is positive only when it is visited
infinitely often. Constraint 3 expresses that the sum of ratio of occurrence of vertices
is equal to 1, while constraint 4 expresses the fact the limit ratio of a vertex should be
equal to limit ratios of all incoming edges, and equal to limit ratio of all outgoing edges



from that vertex. The last constraint stems from the proof of Lemma 1 combined with
the observation that reward rp(σ) of a player p in σ is simply

∑
e∈E perp(e), that is, it

is the weighted sum of the raw rewards of the individual edges. Before we define the
objective function, we state a simple corollary from the proof of Lemma 1.

Corollary 1. Every well behaved PSP that is an ISP satisfies these constraints, and
every well behaved strategy profile (σ, ι), whose play πσ satisfies these constraints,
defines a PSP, which is then an ISP.

Note that the resulting PSP is an ISP even if (σ, ι) is not. This is because the satisfaction
of the constraints are enough for the final contradiction in the proof of Lemma 1.

Construction of incentive equilibria. The objective of the leader is obviously to max-
imise rl(σ)−

∑
p∈Pr{l} ιp =

∑
e∈E perl(e)−

∑
p∈Pr{l} ιp. Once we have this linear

programming problem, it is simple to determine a solution in polynomial time [15,16].
We first observe that it is standard to construct a play defining a PSP from a solution.
(A description is given in the appendix.)

A key observation is that, if the linear program detailed above for setsQ of reachable
vertices and S of vertices visited infinitely often has a solution, then there is a well
behaved reward and punish strategy profile that meets this solution.

Theorem 3. Non-well behaved PSPs that are also ISPs cannot provide better rewards
for the leader than those from well behaved PSPs that are also ISPs.

Proof. Corollary 1 shows that there exists a well defined constraint system obeyed by
all well behaved PSPs that are also ISPs with a set Q of reachable vertices and a set S
of recurrent vertices.

Let us assume for contradiction that there is a reward and punish strategy profile
(σ, ι) that defines a play πσ with the same sets Q and S of reachable and recurrent
vertices, respectively, that provides a strictly better reward rl(σ)−

∑
p∈Pr{l} ιp, which

exceeds the maximal reward obtained by the leader in well behaved PSPs that are also
ISPs by some ε > 0.

We now construct a well behaved PSPs that are also ISPs and that also provides a
better return. First, we take a ι′ with ιp = ι′p for all followers p. This allows us to focus
on the raw rewards only.

Let k be some position in πσ such that, for all i ≥ k, only positions in the infinity set
S of πσ occur. Let π be the tail vkvk+1vk+2 . . . of πσ that starts in position k. Obviously
rp(π) = rp(σ) holds for all players p ∈ P .

We observe that, for all δ > 0, there is an l ∈ N such that, for all m ≥ l,
1
m

∑m−1
i=0 rp

(
(vi, vi+1)

)
> rp(π) − δ holds for all p ∈ P , as otherwise the limes

inferior property would be violated.
We now fix, for all a ∈ N, a sequence πa = vkvk+1vk+2 . . . vk+ma

, such that
vk+ma+1 = vk and 1

m

∑ma−1
i=0 rp

(
(vi, vi+1)

)
> rp(π)− 1

a holds for all p ∈ P .
Let π0 = v0v1 . . . vk−1. We now select π′ = π0π1

b1π2
b2π3

b3 . . ., where the bi are
natural numbers big enough to guarantee that bi·|πi|

|πi+1|+|π0|+
∑i

j=1 bj ·|πj |
≥ 1− 1

i holds.



Letting bi grow this fast ensures that the payoff, which is at least rp(π) − 1
i for all

players p ∈ P , dominates till the end of the first iteration3 of |πi+1|.
The resulting play belongs to a well behaved (as the limit exists) strategy profile,

and can thus be obtained by a well behaved PSP by Corollary 1. It thus provides a
solution to the linear program from above, which contradicts our assumption. ut

Consequently, it suffices to guess the optimal sets Q of vertices that occur and S of
vertices that occur infinitely often to obtain a constraint system that describes an incen-
tive equilibrium, which is well behaved and a PSP—and therefore subgame perfect.

Corollary 2. The decision problems ‘is there a (subgame perfect) incentive equilibrium
with leader reward ≥ r’ is in NP, and the answer to these two questions is the same.

Note that, if we have a fixed number of players, the number of possible constraint
systems is polynomial. Like in [11], there are only polynomially many (for n vertices
and k followers O(nk) many) second parts (the constraints on the follower rewards) of
the constraint systems. For them, it suffices to consider the most liberal setsQ (which is
unique) and S (the SCCs in the game restricted to Q, at most n). For a fixed number of
players, finding incentive equilibiria is therefore in the same class as solving 2MPGs.
By adapting (Section C) the NP hardness proof for leader equilibrium in mean-payoff
games from [11] we get the following results.

Theorem 4. The problem of deciding whether an incentive equilibrium σ with reward
rl(σ) ≥ 1− 1/n of the leader exists in games with rewards in {0, 1}, is NP-complete.

3.3 Secure ε incentive strategy profiles

F F

(0, 0) (0, 1)

Fig. 3. Secure equilibria.

We take a short detour to another class of equilibria that make
a solution stable: secure equilibria. Secure equilibria [8] have
been defined as Nash equilibria with the additional property
that each player would, upon unilateral deviation, either lose
strictly, or no other player would lose. Naturally, we have to
adjust this definition appropriately. We say that a strategy pro-
file (σ, ι) is a secure incentive strategy profile, if, upon unilat-
eral deviation, every follower either receives a strictly lower reward, or an equal reward.
In the latter case, all other players have to receive at least the same reward as before.
We show that we can obtain subgame perfect secure ε incentive equilibria (i.e., every
subgame is a secure incentive strategy profile) by simply increasing the individual in-
centives from the strategy we have constructed by ε

|P | . The payoff between secure ε
incentive equilibria and general incentive equilibria is therefore arbitrarily small. This
is in contrast to leader and Nash equilibria, where security can come to a high cost.

In the simple example shown in Figure 3 (rewards are shown in the order (follower,
leader)), where the left vertex is owned by the follower, the leader can incentivise the

3 Including the first iteration of πi+1 is a technical necessity, as a complete iteration of πi+i

provides better guarantees, but without the inclusion of this guarantee, the πj’s might grow
too fast, preventing the existence of a limes.



follower to move to the right vertex by an arbitrarily small incentive ε, resulting in a se-
cure incentive strategy profile and payoffs of 1−ε and ε for the leader and her follower,
respectively. A secure leader (and Nash) equlibrium would require the follower to stay
forever in the left vertex, resulting in a payoff of 0 for the leader and her follower alike.
This is in contrast to ‘normal’ leader (or Nash) equilibria, which would allow for the
follower moving the token to the right, resulting in a payoff of 1 and 0 for the leader
and her follower, respectively.

4 Experimental results

We have implemented a tool [1] in C++ to evaluate the performance of the proposed
algorithms for multi-player mean-payoff games (MMPG) for a small number of players.
We implemented an algorithm from [22] to find mean values at the vertices. We then
infer and solve a number of constraint systems. We describe our main algorithm here.

4.1 Algorithm specific details

We first evaluate MMPGs using reduction to solving underlying 2MPGs. We then infer
and solve a number of linear programming problems to find a solution. For few num-
ber of players, the number of different solutions to these games is usually small, and,
consequently, the number of linear programming problems to solve is small, too. In
order to find the individual mean partition, we use an algorithm from [22], that finds
0-mean paritions, and expand it quantitatively to find the value of 2MPGs. We recall
that for 2MPG both players have optimal memoryless strategies. Under such strategies,
the game will follow a ‘lasso path’ from every starting vertex: a finite (and possibly
empty) path, followed by a cycle, which is repeated infintiely many times. The value of
a game position is defined by the average of the edge weights on this cycle.

In our context, the edge weights are either 0 or 1. The values of the vertices are
therefore fractions a

l with 0 ≤ a ≤ l ≤ n, where l is the length of the cycle, and a is the
number of ‘accepting’ events in the DBA that refers to the objective of the respective
player, i.e., the edges with value 1, occurring on this cycle.

An α-mean partition of a 2MPG is the subset of vertices, for which the return is
≥ α. Conceptually, to find the a

l -mean partition, one would simply subtract al from the
weight of every edge and look for the 0-mean partition. However, to stay with integers,
it is better to use integer values on the edges, e.g., by replacing the 0s by −a, and the
1s by l − a. For games with n vertices, there are only O(n2) values for the fraction a

l
to consider, as optimal memoryless strategies always lead to lasso paths and only the
cycle at the end of the lasso determines the values for a and l, where 0 < a < l ≤ n.

We start by narrowing down the set of values by classifying the mean partition in a
logarithmic search. After determining the 1

2 mean partition, we know which values are
< 0.5 and ≥ 0.5, respectively. The two parts of the game can then be analysed further,
determining the 1

4 and 3
4 mean partition, respectively. After s such partitionings, all

values in a partition of the game are either known to be in an [k · 2−s, (k + 1) · 2−s[
interval for some k < 2s − 1, or in the interval [1− 2−s, 1]. We stop to bisect when the
size p of a partition is at most 2s. In this case, the respective interval has f ≤ p fractions



with a denominator ≤ p. We determine them, store them in a balanced tree, and use it
to determine the correct value of all vertices of the partition in dlog2 fe steps.

Solving multiplayer mean-payoff games.

1. Initially, we start with a 1
2 mean partition. For the ≥ part of the game, we continue

with a 3
4 mean partition, and so forth. After s = dlog2 ne, we have narrowed the

area down to an interval of length 2−s, and we know that the value lies within this
interval.

2. For each denominator, there is at most one numerator in this interval4. Thus, go-
ing through all possible denominators, we can then sort the resulting fractions in
a balanced tree. It suffices to take those, which are relative prime. (The value is
otherwise already in the balanced tree.)

3. We then use the values stored in the balanced tree to find mean partitions, start-
ing with the root. At most height-of-the-tree many further iterations are needed
(O(log n) many).

The number of different values of nodes in a 2MPG is usually small, and certainly
it would be much smaller than the number of vertices in the game. Consequently, the
number of constraint systems is also small for a small number of players.

We use this algorithm to evaluate a number of randomly created three player MPGs,
where the player take turns. We consider three players – player 1, player 2 and a leader
and two different evaluations on the same game graph. We first see how each player
fares when they try to maximise their return against a coalition of all other players,
including the leader. In the first evaluation, leader forms a coalition with player 1 (min-
imiser) against player 2 (maximiser) on the payoffs defined for player 2. We find the
different possible mean values at the nodes in this evaluation, using the algorithm from
above. In the second evaluation, leader forms a coalition with player 2 (minimiser)
against player 1 (maximiser) on the payoffs defined for player 1. We also note the dif-
ferent possible mean values at the nodes in this evaluation, using again the algorithm
from above.

The resultant two-player games provide the constraints for the linear programming
problems. These different values form the different thresholds that we have to consider.
We now consider all possible combinations of these different threshold values for the
followers and determine the vertices that comply with them.

For each set of vertices, we then do the following:
a) We first recursively remove the nodes that have no successor; b) We then remove

the nodes that are not reachable from the initial state, i.e., we determine the set of reach-
able vertices; c) We determine the strongly connected set of components (SCCs); and
d) For the SCCs formed from above, we build and solve the respective linear program.

Constraints on SCCs. To construct the linear programs over the SCCs formed from
above, we have side-constraints on the edge-ratio and vertex-ratio (these constraints are
to comply with the limit behaviour of nodes and edges) and we have constraint over the
reward of player. The constraints over ratios of edge and vertices and over reward of the
players can be seen in detail in [11]. Additionally, to construct an incentive equilibrium,
we have a constraint over incentives here. We first have constraints on the nodes and

4 Exception: n = 2s But then we can simply look for the 1 mean partition and are done.



edges that form part of the strongly connected component S: a) ratio of vertices and
edges that are not part of S is 0, b) ratio of vertices and edges that are in S is ≥ 0, c)
sum of the ratio of vertices is 1

The second part of constraint system is constraint over rewards:

– for every player p other than the leader, that own some vertex in S, we have con-
straint over her reward

ιp +
∑
e∈E

perp(e) ≥ max
v∈Q

(rp(v))

where pe is the ratio by which edge e is taken, rp(e) is the edge weight for player
p at edge e, rp(v) is the mean value of game for player p in set S and ιp is an
incentive given to player p and ιp ≥ 0

– objective of the constraint system is to maximise leader’s reward, i.e., maximising
reward at leader nodes in S. This gives us objective function: maximise

∑
e∈E perl(e)−∑

p∈P ιp

For a set Q, we may have number of SCCs and there is a constraint system for every
such component. In this case, we would take the one that maximises leader’s reward.

Fig. 4. The figure shows results for a generalisation of example 2 for multiple players with n
nodes in the inner cycle and n− 1 nodes in outer cycles where n is the number of players.

4.2 Experimental results

Experiments indicate that our implementation of the algorithm can solve examples of
size 100 nodes and 10 players within 30 minutes. The algorithm is, of course, much
faster for the games with two or three players. Figures 4 and 5 show the experimental
results for the following two problem classes.



Fig. 5. The left figure shows the results for randomly generated MMPGs with 3 players, while
the right one is for randomly generated MMPGs with 3 to 10 players.

– Recall the example from Figure 2. We generalise this example for token ring graph
parameterised by 2 variables, n and d. It has ’n’ nodes on the inner cycle, each
of which correspond to ’n’ different players and each of these ’n’ nodes is also
present on another cycle of length ’d’. The weights are set such that, all players
except the leader get ’1/n’ if they chose the inner ring and get ’1/d’ if they chose
their respective outer ring. The leader reward is ’1’ in the inner ring and ’1/d’ in
all the other rings. The data supports the pen-and-paper analysis that incentives are
useful iff n > d > n(n− 1)/(2n− 1) holds. Figure 4 shows the leader reward for
this example and the running time of our tool to compute it.

– Figure 5 (left plot) shows the difference between incentive equilibrium and leader
equilibrium for randomly generated 3 player MMPGs, while the right plot shows
similar results on random graphs, where the number of players range from 3 to 10.

The evaluation results confirm that the leader reward increases significantly in in-
centive equilibria when compared to leader equilibria.

5 Discussion

The main contribution of this paper is the introduction of incentive equilibria in multi-
player mean-payoff games and the implementation of our techniques in a tool. We study
how a rational leader might improve over her outcome by paying small incentives to her
followers. At first, it may not seem to be a rational move of the leader, but close insight
would show how a leader might improve her reward in this way. The incentive equilib-
ria are seen as an extension to leader equilibria, where a rational leader, by giving an
incentive to every other player in the game, can derive an optimal strategy profile. We
believe that these techniques are helpful for the leader when maximising the return for
a single player and would also be instrumental in defining stable rules and optimising
various outcomes. The evaluation results from Section 4 show that the results are sig-
nificantly better for the leader in an incentive equilibrium as compared to her return in
a leader equilibrium.
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Appendix

A From Q, S, and a solution to the linear programs to a well
behaved reward and punish strategy profile

We start with the simple case that the vertices and edges with non-0 ratio are strongly
connected.

We design πσ as follows. We first go from the initial vertex v0 through states inQ to
some state in S. (Note that this initial path has no bearing on the lower limit that defines
the payoff of the individual players.)

Once we have reached S, we intuitively keep a list for each vertex in S. In this list,
we keep the number of times each outgoing edge with non-0 ratio has been taken. We
also apply an arbitrary (but fixed) order on the outgoing edges. Each time we are in this
vertex, we choose the first edge (according to this order) that has been taken less often
(from this vertex) than pe

pv
, the ratio pe of the edge divided by the ratio pv of this vertex,

suggests. If no such edge exists, we take the first edge.
The result is obviously a well behaved strategy profile and the first part of the con-

straint system is clearly satisfied. It therefore suffices to convince ourselves that the
second part is satisfied as well.

Now assume for contradiction that this is not the case. Let qv and qe be the real
ratio of the vertices and edges, respectively. Note that our simple rule for the selection
of vertices implies that pepv is correct for all edges e = (v, v′) ∈ E ∩ S × S. Then there
must be a vertex v ∈ S, which has the highest factor qvpv . As it is the highest factor, none
of its predecessors in E ∩ S × S can have a higher ratio; consequently, they must have
the same ratio. By a simple inductive argument, this expands to the complete strongly
connected set of non-0 vertices. As

∑
v∈S pv = 1 =

∑
v∈S qv holds, this implies

pv = qv for all v ∈ S.
To extend this argument to the general case, we first observe that the non-0 vertices

and edges form islands of (maximal) SC parts C1, through Ck. We use this observation
to compose a play as follows.

We start with an initial part, a transfer from v0 to C1 as in the simple case. We then
continue by playing a C1

1 part, a transfer, a C1
2 part, a transfer, . . ., a C1

k part, transfer
C2

1 , and so forth. To achieve a well behaved strategy profile we do the following.

1. We fix the ratio
∑
i C

i
1 :
∑
i C

i
2 : . . . :

∑
i C

i
k according to the the sum of the pv

for vertices v in the respective component. This ratio never changes, and it is given
by natural numbers c1, c2, . . . , ck, such that c1 : c2 : . . . : ck satisfies this ratio.

2. We let Cij grow slowly with i. We can, for example, use i · cj .
Note that the transfer part has constant length, bounded by |S|. Thus the limit ratio
of transfer is 0.

3. We let the transfer to Cij+1 go to the vertex, in which Cij was left. Note that the
transfer may contain vertices of various components, but as the overall ratio of the
transport is 0, this does not affect the limit probability.
Thus, we can use the controller from the simple case of one SCC for the sequence
C1
i , C

2
i , C

3
i . . ., which only focuses on the relevant part of the ith component.



In effect, we have simple controllers for the individual components, and a single
counting controller that manages the transfer between the components.

It is easy to see that the resulting controller inherits the right ratios from the simple
individual controllers. Together with Corollary 1 we get:

Observation. If the linear program from above for sets Q of reachable states and S of
states visited infinitely often has a solution, then there is a well behaved reward and
punish strategy profile that meets this solution. ut

B Implementation related details

For an efficient implementation we restricted our rewards to 0 and 1. This class of
MMPG is sufficient to solve quantitative Buchi game problems where the goal of each
player is to maximise the limit share of time spend in accepting states. A practical
example of such a situation is shown below.

B.1 Paradigmatic examples

Consider a client and server application where client is responsible for making requests
and server is responsible for granting or scheduling access to the resource being re-
quested. The client and server programs are depicted as a deterministic buchi automata
(DBA) and their objectives remain to maximise the limit-average share of the time they
would spent in an accepting state. We refer to DBA A from Figure 6 and DBA B from
Figure 7 for the objectives of client and server in respective order. While A would try
to maximise the time spent in accepting state and thereby increasing her limit share of
reward, B would try to maximise overall utilisation by trying to optimise return for both
A and B. In this example, if A is in an accepting state or utilising the critical resource,
A would receive a utility of 1. While, if B is in an acceptance state or utilising the crit-
ical resource, B would receive a utility of 10. If both A and B alternatively take turns
between accessing the critical resource, overall return for A is 0.5 while overall return
for B is 5. Contrary to this, a rational server would look at means of improving its util-
isation. For this, B may try to maximise the time spent in the acceptance state so as to
increase the overall resource utilisation. For example, B may take turn 3

4 of the time to
be spent in critical section and would allow A to access the critical section for 1

4 of the
total time. B may further give a small incentive amount of 1

4 to A so as overall return
for A is same as earlier, i.e., 1

2 while B now gains from 5 to 7.25. This way, return for
B would be increased to 7.25.

In some state of this model,A has choices between two edge-transitions to the same
state. For example, in Figure 6, A has the choice to take two different edge-transitions
to stay in critical section. On one edge transition, s, the edge-weight is (0, 1,−1) and
there is another edge transition s′ that has edge weight (−1, 3,−2). Here, pay-offs are
in the order A, B and a passive player. If A alternates between taking the two transi-
tions, A would receive a payoff of −0.5 and B gets 2 here. In order to gain maximum
benefit, B may assign a strategy to A where instead of doing alternations between two
transitions,A would take edge transition s with probability 1

4 and s′ with probability 3
4 .
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To incentivise A for this strategy, B gives an incentive of 0.25 to A and thus A would
receive an overall return of −0.5 and payoff for B is increased from 2 to 2.25.

C Complexity

Theorem 5. The problem of deciding whether an incentive equilibrium σ with reward
rl(σ) ≥ 1− 1/n of the leader exists in games with rewards in {0, 1}, is NP-complete.

Proof (of Theorem 5). The proof closely relates to the NP hardness proof for leader
equilibrium in mean-payoff games from [11]. We consider reduction of the 3SAT sat-
isfiability formula over n atomic propositions with m conjuncts to solve a MMPG, in
order to establish NP Hardness. We assume the game graph has 2n + 1 players and
5m+4n+2 vertices with payoffs 0 and 1 only. For reduction, we consider an example
of a 3SAT formula C1 ∧ C2 ∧ C3 with C1 = p ∨ q ∨ ¬r, C2 = p ∨ ¬q ∨ ¬r, and
C3 = ¬p ∨ q ∨ r. We have 2n players for the 2n literals that corresponds to the n
variables and there is one leader player. The game consists of three phases – an initial
assignment phase in which leader would make either truth or false assignment to the
literal players. Then, we have a validation phase, in which leader intuitively tries to
validate the 3SAT formula as per the assignment done in assignment phase. In the third
evaluation phase, payoffs are rewarded to every player including leader. Assignment
phase would consist of 2n literal vertices and m leader vertices as leader chooses liter-
als corresponding to n variables for the formula assignment. In Validation phase, there
are 3 vertices in every conjunct of the 3SAT formula, i.e., 3m vertices. In the evaluation
phase, we again have 2n literal vertices and a leader vertex where game goes round in
a cycle of length n. At every point in this cycle, payoffs are given to the players and the
leader. There is additionally one sink vertex in the game graph, that has only one outgo-
ing edge to itself. The sink vertex has a payoff of 1 for all literal players but a payoff of
0 for the leader. Game is terminated at sink vertex. It is in the evaluation phase that by
choosing the payoff for the players, it can be decided whether there exists an incentive
equillibrium in the game with payoff of 1 for the leader.

Starting in the assignment phase, for each of the m conjuncts, there are m leader
vertices. For each conjunct, leader would select a literal vertex for each variable. Like,
for a variable ′Z ′, leader would either choose an assignment ′z′ or ′¬z′. The selected
literal vertex then has two choices – to continue the game by going to the next leader



vertex or to termintae the game by choosing to go to sink vertex. The sink vertex has
only one self loop that has only one outgoing edge with payoff of 1 for all literal players
and a payoff of 0 for the leader. If literal vertex chooses to go to next leader vertex,
leader would go with further assignments in the asignment phase.

In the validation phase, leader intuitively tries to validate whether the 3SAT formula
is satisfiable or not according to the chosen assignments in the assignment phase. For
each conjunct and for each variable ′Z ′, leader either goes to ′z′ where literal ′¬z′
receives a payoff of 0 and every other player and leader would receive a payoff of 1.
Here, also, at every literal vertex, player may opt to continue the game by going to the
next leader vertex or to terminate the game by going to the sink vertex. In our example
formula, the formula is satisfiable if leader in the assignment phase would select literals
p, ¬q and r. The incentive equilibrium would be a path

(
p,¬q, r)ω . If the formula is

not satisfiable, any run might have to path by both ′z′ and ′¬z′ for a conjunct and a
literal player at any point who receives a payoff of 0 might terminate the game by going
to sink vertex – that results in leader receiving a payoff of 0. Thus, for the strategy
profiles that end up in the sink vertex and for the unsatisfiable formulae, an incentive
equilibrium would have a payoff of 0 for the leader. In the validation phase, if a literal
player deviates to sink vertex, all other player receive a payoff of 1. Leader, therefore,
incentivise all remaining players to form a coalition and act against the deviating player.
Leader can promise to pay an incentive of 1/n to every other player in the game.

While, if the formula is satisfiable, game futher goes to the evaluation phase, where
nodes are owned by the leader. Here, for a variable ′Z ′, leader either moves to ′z′, where
a payoff of 1 is given to every player but 0 is given to ′¬z′or leader goes to ′¬z′ where
a payoff of 1 is given to ′¬z′ and all other players, while a payoff of 0 is given to ′z′.
Additionally, an incentive of 1/n is given to all other players. The leader’s payoff in
any incentive equilibrium, therefore, equals to 1− 1/n, that is better than the payoff of
0 at the sink vertex for the leader. The proof is now complete.

D Secure ε incentive strategy profiles

Based upon the discussion from Section 3.3, we state the following theorem.

Theorem 6. We can obtain a secure subgame perfect ε incentive equilibrium (σ, ι).

Proof. Using Theorem 3, we can produce a well behaved incentive equilibrium, which
is also a PSP. Re-visiting the proof of Lemma 1, this PSP satisfies the requirements of
a secure incentive equilibrium in every subgame that starts in a deviating history.

For non-deviating histories, however, we have that no follower benefits from de-
viation, but will normally lack the security property (e.g., in the example from Fig-
ure 1). We now produce a new PSP (σ, ι′), such that ι′ is obtained from ι by selecting
ι′p = ιp +

ε
|P | for all followers. The subgames that start in a deviating history are not

affected by this change, such that the resulting PSP also satisfies the requirements of a
secure incentive equilibrium from these positions. For non-deviating histories, however,
we have now increased the value for following slightly, such that the pre-requisite of
secure equilibria is satisfied here, too. (The deviating follower would strictly decrease
his reward.)
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