Skip to main content

Asymptotic Logical Uncertainty and the Benford Test

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2016)

Abstract

Almost all formal theories of intelligence suffer from the problem of logical omniscience, the assumption that an agent already knows all consequences of its beliefs. Logical uncertainty codifies uncertainty about the consequences of existing beliefs. This implies a departure from beliefs governed by standard probability theory. Here, we study the asymptotic properties of beliefs on quickly computable sequences of logical sentences. Motivated by an example we call the Benford test, we provide an approach which identifies when such subsequences are indistinguishable from random, and learns their probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We will use the term “probability” to refer to degrees of belief generally, whether or not the probability axioms are obeyed.

  2. 2.

    The test presumes that the frequencies of the first digits in the sequence \(3\uparrow ^n 3\) satisfy Benford’s law. Though this seems likely, the conjecture is not too important; any sufficiently fast-growing sequence satisfying Benford’s law could serve as an example.

  3. 3.

    We tailored this definition of irreducible pattern to our needs. The theory of algorithmic randomness may offer alternatives. However, algorithmic randomness generally considers all computable tests and focuses on the case where \(p=\frac{1}{2}\) [22, 23]. We believe that any reasonable definition inspired by algorithmic randomness would imply Definition 2.

  4. 4.

    See pre-print version [24] for the full proof.

  5. 5.

    See pre-print version [24] for the full proof.

References

  1. Christiano, P.: Non-Omniscience, Probabilistic Inference, and Metamathematics. Technical report 2014–3. Berkeley, CA: Machine Intelligence Research Institute (2014). http://intelligence.org/files/Non-Omniscience.pdf

  2. Hennig, P., Osborne, M.A., Girolami, M.: Probabilistic numerics and uncertainty in computations. Proc. Royal Soci. London A: Math. Phys. Eng. Sci. 471, 2179 (2015)

    MathSciNet  Google Scholar 

  3. Beckman, N.E., Nori, A.V.: Probabilistic, modular andscalable inference of typestate specifications. ACM SIGPLAN Not. 46(6), 211–221 (2011). ACM

    Article  Google Scholar 

  4. Polya, G.: Mathematics and Plausible Reasoning: Patterns ofplausible inference, vol. 2. Princeton University Press, Princeton (1968)

    MATH  Google Scholar 

  5. Parikh, R.: Knowledge and the problem of logical omniscience. ISMIS 87, 432–439 (1987)

    MathSciNet  Google Scholar 

  6. Gaifman, H.: Reasoning with limited resources and assigning probabilities to arithmetical statements. Synthese 140, 97–119 (2004). doi:10.1023/B:SYNT.0000029944.99888.a7

    Article  MathSciNet  Google Scholar 

  7. Cozic, M.: Impossible states at work: Logicalomniscience and rational choice. Contrib. Econ. Anal. 280, 47–68 (2006)

    Article  Google Scholar 

  8. Halpern, J.Y., Pucella, R.: Dealing with logical omniscience. In: Proceedings of the 11th Conference on Theoretical aspects of Rationality and Knowledge, pp. 169–176. ACM (2007)

    Google Scholar 

  9. Demski, A.: Logical prior probability. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 50–59. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35506-6

    Chapter  Google Scholar 

  10. Soares, N., Fallenstein, B.: Questions of Reasoning Under Logical Uncertainty. Technical report 2015–1. Berkeley, CA: MachineIntelligence Research Institute (2015). https://intelligence.org/files/QuestionsLogicalUncertainty.pdf

  11. Cox, R.T.: Algebra of Probable Inference. JHU Press, Baltimore (1961)

    MATH  Google Scholar 

  12. Horn, A., Tarski, A.: Measures in boolean algebras. Trans. Am. Math. Soci. 64(3), 467–467 (1948). doi:10.1090/S0002-9947-1948-0028922-8. http://www.ams.org/journals/tran/1948-064-03/S0002-9947-1948-0028922-8/S0002-9947-1948-0028922-8.pdf

    Article  MathSciNet  MATH  Google Scholar 

  13. Maharam, D.: An algebraic characterization of measurealgebras. Ann. Math. 48(1), 154–167 (1947). doi:10.1016/j.annemergmed.2010.11.022. ISSN: 01960644

    Article  MathSciNet  MATH  Google Scholar 

  14. Loś, J.: On the axiomatic treatment of probability. Colloquium Math. 2(3), 125–137 (1955)

    MathSciNet  MATH  Google Scholar 

  15. Gaifman, H.: Concerning measures in first order calculi. Israel J. Math. 2(1), 1–18 (1964). doi:10.1007/BF02759729

    Article  MathSciNet  MATH  Google Scholar 

  16. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hailperin, T., et al.: Probability logic. Notre Dame J. Formal Logic 25(3), 198–212 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hutter, M., et al.: Probabilities on sentences in anexpressive logic. J. Appl. Logic 11(4), 386–420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vovk, V.G.: Aggregating strategies. In: Proceedings of the Third Workshop on Computational Learning Theory, pp. 371–383. Morgan Kaufmann (1990)

    Google Scholar 

  20. Weinberger, M.J., Ordentlich, E.: On delayedprediction of individual sequences. Inf. Theor. IEEE Trans. 48(7), 1959–1976 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pietronero, L., et al.: Explaining the uneven distribution ofnumbers in nature: the laws of Benford and Zipf. Physica A: Stat. Mech. Appl. 293(1–2), 297–304 (2001). doi:10.1016/S0378-4371(00)00633-6. ISSN: 03784371. eprint: 9808305

    Article  MATH  Google Scholar 

  22. Ko, K.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci. 48, 9–33 (1986). doi:10.1016/0304-3975(86)90081-2. ISSN:03043975

    Article  MathSciNet  MATH  Google Scholar 

  23. Downey, R.G., Hirschfeldt, D.R.: Algorithmicrandomness and complexity. Springer Science & Business Media (2010). ISBN: 9780387955674. doi:10.4249/scholarpedia.2574

    Google Scholar 

  24. Garrabrant, S., et al.: Asymptotic Logical Uncertainty and TheBenford Test. Preprint (2015). arXiv: 1510.03370 [cs.LG]

  25. Hennie, F.C., Stearns, R.E.: Two-tape simulation ofmultitape Turing machines. J. ACM 13(4), 533–546 (1966). doi:10.1145/321356.321362. ISSN: 00045411

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abram Demski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Garrabrant, S. et al. (2016). Asymptotic Logical Uncertainty and the Benford Test. In: Steunebrink, B., Wang, P., Goertzel, B. (eds) Artificial General Intelligence. AGI 2016. Lecture Notes in Computer Science(), vol 9782. Springer, Cham. https://doi.org/10.1007/978-3-319-41649-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41649-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41648-9

  • Online ISBN: 978-3-319-41649-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics