Abstract
Almost all formal theories of intelligence suffer from the problem of logical omniscience, the assumption that an agent already knows all consequences of its beliefs. Logical uncertainty codifies uncertainty about the consequences of existing beliefs. This implies a departure from beliefs governed by standard probability theory. Here, we study the asymptotic properties of beliefs on quickly computable sequences of logical sentences. Motivated by an example we call the Benford test, we provide an approach which identifies when such subsequences are indistinguishable from random, and learns their probabilities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We will use the term “probability” to refer to degrees of belief generally, whether or not the probability axioms are obeyed.
- 2.
The test presumes that the frequencies of the first digits in the sequence \(3\uparrow ^n 3\) satisfy Benford’s law. Though this seems likely, the conjecture is not too important; any sufficiently fast-growing sequence satisfying Benford’s law could serve as an example.
- 3.
We tailored this definition of irreducible pattern to our needs. The theory of algorithmic randomness may offer alternatives. However, algorithmic randomness generally considers all computable tests and focuses on the case where \(p=\frac{1}{2}\) [22, 23]. We believe that any reasonable definition inspired by algorithmic randomness would imply Definition 2.
- 4.
See pre-print version [24] for the full proof.
- 5.
See pre-print version [24] for the full proof.
References
Christiano, P.: Non-Omniscience, Probabilistic Inference, and Metamathematics. Technical report 2014–3. Berkeley, CA: Machine Intelligence Research Institute (2014). http://intelligence.org/files/Non-Omniscience.pdf
Hennig, P., Osborne, M.A., Girolami, M.: Probabilistic numerics and uncertainty in computations. Proc. Royal Soci. London A: Math. Phys. Eng. Sci. 471, 2179 (2015)
Beckman, N.E., Nori, A.V.: Probabilistic, modular andscalable inference of typestate specifications. ACM SIGPLAN Not. 46(6), 211–221 (2011). ACM
Polya, G.: Mathematics and Plausible Reasoning: Patterns ofplausible inference, vol. 2. Princeton University Press, Princeton (1968)
Parikh, R.: Knowledge and the problem of logical omniscience. ISMIS 87, 432–439 (1987)
Gaifman, H.: Reasoning with limited resources and assigning probabilities to arithmetical statements. Synthese 140, 97–119 (2004). doi:10.1023/B:SYNT.0000029944.99888.a7
Cozic, M.: Impossible states at work: Logicalomniscience and rational choice. Contrib. Econ. Anal. 280, 47–68 (2006)
Halpern, J.Y., Pucella, R.: Dealing with logical omniscience. In: Proceedings of the 11th Conference on Theoretical aspects of Rationality and Knowledge, pp. 169–176. ACM (2007)
Demski, A.: Logical prior probability. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 50–59. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35506-6
Soares, N., Fallenstein, B.: Questions of Reasoning Under Logical Uncertainty. Technical report 2015–1. Berkeley, CA: MachineIntelligence Research Institute (2015). https://intelligence.org/files/QuestionsLogicalUncertainty.pdf
Cox, R.T.: Algebra of Probable Inference. JHU Press, Baltimore (1961)
Horn, A., Tarski, A.: Measures in boolean algebras. Trans. Am. Math. Soci. 64(3), 467–467 (1948). doi:10.1090/S0002-9947-1948-0028922-8. http://www.ams.org/journals/tran/1948-064-03/S0002-9947-1948-0028922-8/S0002-9947-1948-0028922-8.pdf
Maharam, D.: An algebraic characterization of measurealgebras. Ann. Math. 48(1), 154–167 (1947). doi:10.1016/j.annemergmed.2010.11.022. ISSN: 01960644
Loś, J.: On the axiomatic treatment of probability. Colloquium Math. 2(3), 125–137 (1955)
Gaifman, H.: Concerning measures in first order calculi. Israel J. Math. 2(1), 1–18 (1964). doi:10.1007/BF02759729
Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)
Hailperin, T., et al.: Probability logic. Notre Dame J. Formal Logic 25(3), 198–212 (1984)
Hutter, M., et al.: Probabilities on sentences in anexpressive logic. J. Appl. Logic 11(4), 386–420 (2013)
Vovk, V.G.: Aggregating strategies. In: Proceedings of the Third Workshop on Computational Learning Theory, pp. 371–383. Morgan Kaufmann (1990)
Weinberger, M.J., Ordentlich, E.: On delayedprediction of individual sequences. Inf. Theor. IEEE Trans. 48(7), 1959–1976 (2002)
Pietronero, L., et al.: Explaining the uneven distribution ofnumbers in nature: the laws of Benford and Zipf. Physica A: Stat. Mech. Appl. 293(1–2), 297–304 (2001). doi:10.1016/S0378-4371(00)00633-6. ISSN: 03784371. eprint: 9808305
Ko, K.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci. 48, 9–33 (1986). doi:10.1016/0304-3975(86)90081-2. ISSN:03043975
Downey, R.G., Hirschfeldt, D.R.: Algorithmicrandomness and complexity. Springer Science & Business Media (2010). ISBN: 9780387955674. doi:10.4249/scholarpedia.2574
Garrabrant, S., et al.: Asymptotic Logical Uncertainty and TheBenford Test. Preprint (2015). arXiv: 1510.03370 [cs.LG]
Hennie, F.C., Stearns, R.E.: Two-tape simulation ofmultitape Turing machines. J. ACM 13(4), 533–546 (1966). doi:10.1145/321356.321362. ISSN: 00045411
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Garrabrant, S. et al. (2016). Asymptotic Logical Uncertainty and the Benford Test. In: Steunebrink, B., Wang, P., Goertzel, B. (eds) Artificial General Intelligence. AGI 2016. Lecture Notes in Computer Science(), vol 9782. Springer, Cham. https://doi.org/10.1007/978-3-319-41649-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-41649-6_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41648-9
Online ISBN: 978-3-319-41649-6
eBook Packages: Computer ScienceComputer Science (R0)