Abstract
Today online social network services are challenging state-of-the-art social media mining algorithms and techniques due to its real-time nature, scale and amount of unstructured data generated. The continuous interactions between online social network participants generate streams of unbounded text content and evolutionary network structures within the social streams that make classical text mining and network analysis techniques obsolete and not suitable to deal with such new challenges. Performing event detection on online social networks is no exception, state-of-the-art algorithms rely on text mining techniques applied to pre-known datasets that are being processed with no restrictions on the computational complexity and required execution time per document analysis. Moreover, network analysis algorithms used to extract knowledge from users relations and interactions were not designed to handle evolutionary networks of such order of magnitude in terms of the number of nodes and edges. This specific problem of event detection becomes even more serious due to the real-time nature of online social networks. New or unforeseen events need to be identified and tracked on a real-time basis providing accurate results as quick as possible. It makes no sense to have an algorithm that provides detected event results a few hours after being announced by traditional newswire.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, M.K., Ramamritham, K., Bhide, M.: Real time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environments. Proc. VLDB Endow. 5(10), 980–991 (2012). http://arxiv.org/abs/1207.0138
Aggarwal, C.C., Zhai, C.: A survey of text clustering algorithms. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 77–128. Springer, New York (2012)
Allan, J.: Topic Detection and Tracking: Event-based Information Organization. The Kluwer International Series on Information Retrieval, vol. 12. Springer, New York (2002). http://portal.acm.org/citation.cfm?id=772260
Allan, J., Jin, H., Rajman, M., Wayne, C., Gildea, D., Lavrenko, V., Hoberman, R., Caputo, D.: Topic-based novelty detection 1999 summer workshop at CLSP final report (1999). http://old-site.clsp.jhu.edu/ws99/projects/tdt/final_report/report.pdf. Accessed 2 Nov 2013
Allan, J., Lavrenko, V., Jin, H.: First story detection in TDT is hard. In: CIKM 2000 Proceedings of the Ninth International Conference on Information and Knowledge Management, pp. 374–381. ACM (2000)
Allan, J., Lavrenko, V., Malin, D., Swan, R.: Detections, Bounds, and Timelines: UMass and TDT-3. Information Retrieval, pp. 167–174 (2000). http://maroo.cs.umass.edu/pdf/IR-201.pdf
Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 1998, New York, USA, pp. 37–45 (1998). http://portal.acm.org/citation.cfm?doid=290941.290954
Angel, A., Koudas, N., Sarkas, N., Srivastava, D.: What’s on the grapevine? In: Proceedings of the 35th SIGMOD International Conference on Management of Data - SIGMOD 2009, p. 1047 (2009). http://portal.acm.org/citation.cfm?doid=1559845.1559977
Atefeh, F., Khreich, W.: A survey of techniques for event detection in Twitter. Comput. Intell. (2013). http://doi.wiley.com/10.1111/coin.12017
Bampis, E., Jansen, K., Kenyon, C.: Efficient Approximation and Online Algorithms. Springer, Heidelberg (2010). http://www.amazon.com/Efficient-Approximation-Online-Algorithms-Combinatorial/dp/3540322124
Barabasi, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207 (2005). http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0505371
Becker, H., Chen, F., Iter, D.: Automatic identification and presentation of Twitter content for planned events. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, pp. 655–656 (2011). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/download/2743/3198
Becker, H., Iter, D., Naaman, M., Gravano, L.: Identifying content for planned events across social media sites. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining - WSDM 2012, p. 533 (2012). http://dl.acm.org/citation.cfm?doid=2124295.2124360
Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event identification on Twitter. In: ICWSM, pp. 438–441. Technical Report CUCS-012-11, Columbia University. The AAAI Press (2011). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/viewPDFInterstitial/2745/3207
Benson, E., Haghighi, A., Barzilay, R.: Event discovery in social media feeds. Artif. Intell. 3(2–3), 389–398 (2011). http://aria42.com/pubs/events.pdf, http://dl.acm.org/citation.cfm?id=2002472.2002522
Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006). http://link.springer.com/chapter/10.1007/3-540-28349-8_2
Bifet, A., Kirkby, R.: Data stream mining: a practical approach. Technical report, The University of Waikato, August 2009
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(4–5), 993–1022 (2003). http://www.crossref.org/jmlr_DOI.html
Brants, T., Chen, F.: A system for new event detection. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval SIGIR 2003, 2002, p. 330 (2003). http://portal.acm.org/citation.cfm?doid=860435.860495
Cataldi, M., Torino, U., Caro, L.D., Schifanella, C.: Emerging topic detection on Twitter based on temporal and social terms evaluation. In: Proceedings of the Tenth International Workshop onMultimedia Data Mining, pp. 1–10 (2010). http://dl.acm.org/citation.cfm?id=1814245.1814249
Chen, C.C., Chen, Y.-T., Sun, Y., Chen, M.-C.: Life cycle modeling of news events using aging theory. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 47–59. Springer, Heidelberg (2003). http://link.springer.com/chapter/10.1007/978-3-540-39857-8_7
Chen, L., Roy, A.: Event detection from flickr data through wavelet-based spatial analysis. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 523–532 (2009). http://dl.acm.org/citation.cfm?id=1646021npapers2://publication/uuid/8EC6E15D-D958-4A0A-88E5-8D62631BF7C5
Cordeiro, M.: Twitter event detection: combining wavelet analysis and topic inference summarization. In: The Doctoral Symposium on Informatics Engineering - DSIE 2012 (2012). http://paginas.fe.up.pt/~prodei/dsie12/papers/paper_14.pdf
Corley, C.D., Dowling, C., Rose, S.J., McKenzie, T.: SociAL sensor analytics: measuring phenomenology at scale. In: 2013 IEEE International Conference on Intelligence and Security Informatics, pp. 61–66. IEEE, June 2013. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6578787
Dou, W., Wang, X., Skau, D., Ribarsky, W., Zhou, M.X.: LeadLine: interactive visual analysis of text data through event identification and exploration. In: IEEE Conference on Visual Analytics Science and Technology 2012, VAST 2012 - Proceedings, pp. 93–102 (2012)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. October 2000. http://dl.acm.org/citation.cfm?id=954544
Erosheva, E., Fienberg, S., Lafferty, J.: Mixed-membership models of scientific publications. Proc. Natl. Acad. Sci. U.S.A. 101(Suppl 1), 5220–5227 (2004)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.2930
Farzindar, A.: Social network integration in document summarization. In: Fiori, A. (ed.) Innovative Document Summarization Techniques: Revolutionizing Knowledge Understanding. IGI-Global, Hershey (2014)
Fiscus, J.G., Doddington, G.R.: Topic detection and tracking evaluation overview. In: Topic Detection and Tracking, pp. 17–31 (2002). http://www.springerlink.com/index/T652P42711XW6421.pdf
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9093
Fung, G.G.P.C., Yu, J.X.J., Yu, P.P.S., Lu, H.: Parameter free bursty events detection in text streams. In: Proceedings of the 31st International Conference on Very Large Data Bases - VLDB 2005, vol. 1, pp. 181–192 (2005). http://dl.acm.org/citation.cfm?id=1083616 http://www.scopus.com/inward/record.url?eid=2-s2.0-33745624002&partnerID=tZOtx3y1
Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: VLDB 1999: Proceedings of the 25th International Conference on Very Large Data Bases, pp. 518–529 (1999). http://portal.acm.org/citation.cfm?id=671516
Goorha, S., Ungar, L.: Discovery of significant emerging trends. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), p. 57 (2010). http://dl.acm.org/citation.cfm?doid=1835804.1835815
Gu, H., Xie, X., Lv, Q., Ruan, Y., Shang, L.: ETree: effective and efficient event modeling for real-time online social media networks. In: 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, pp. 300–307. IEEE, August 2011. http://dl.acm.org/citation.cfm?id=2052138.2052366
He, Q., Chang, K., Lim, E.P.: Analyzing feature trajectories for event detection. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2007, p. 207 (2007). http://portal.acm.org/citation.cfm?doid=1277741.1277779\(\backslash \)n, http://doi.acm.org/10.1145/1277741.1277779
He, Q., Chang, K., Lim, E., Zhang, J.: Bursty feature representation for clustering text streams. In: SDM, pp. 491–496 (2007). https://www.siam.org/proceedings/datamining/2007/dm07_050he.pdf
Hounshell, B.: The revolution will be tweeted. Foreign Policy 187, 20–21 (2011)
Hu, M., Sun, A., Lim, E.P.: Event detection with common user interests. In: Proceeding of the 10th ACM Workshop on Web Information and Data Management - WIDM 2008, New York, USA, p. 1. ACM, New York, October 2008. http://dl.acm.org/citation.cfm?id=1458502.1458504
Hussein, D., Alaa, G., Hamad, A.: Towards usage-centered design patterns for social networking systems. In: Park, J.J., Yang, L.T., Lee, C. (eds.) FutureTech 2011, Part II. CCIS, vol. 185, pp. 80–89. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-22309-9_10
Imran, M., Castillo, C., Diaz, F., Vieweg, S.: Processing social media messages in mass emergency: a survey, July 2014. http://arxiv.org/abs/1407.7071
Jo, T., Lee, M.R.: The evaluation measure of text clustering for the variable number of clusters. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007, Part II. LNCS, vol. 4492, pp. 871–879. Springer, Heidelberg (2007). http://dx.doi.org/10.1007/978-3-540-72393-6_104
Jurgens, D., Stevens, K.: Event detection in blogs using temporal random indexing. In: Proceedings of the Workshop on Events in Emerging Text Types, pp. 9–16 (2009). http://dl.acm.org/citation.cfm?id=1859650.1859652
Kanerva, P., Kristofersson, J., Holst, A.: Random indexing of text samples for latent semantic analysis. In: Proceedings of the 22nd Annual Conference of the Cognitive Science Society, vol. 1036, pp. 16429–16429 (2000). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.6523&rep=rep1&type=pdf
Keogh, E.: Exact indexing of dynamic time warping. In: Proceedings of the 28th International Conference on Very Large Data Bases VLDB 2002, pp. 406–417, August 2002. http://dl.acm.org/citation.cfm?id=1287369.1287405
Kleinberg, J.: Bursty and hierarchical structure in streams. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD 2002, vol. 7, no. 4, p. 91 (2002). http://portal.acm.org/citation.cfm?doid=775047.775061
Kohonen, T.: The self-organizing map. Proc. IEEE 78, 1464–1480 (1990)
Kontostathis, A., Galitsky, L.M., Pottenger, W.M., Roy, S., Phelps, D.J.: A survey of emerging trend detection in textual data mining. In: Berry, M.W. (ed.) Survey of Text Mining. Springer, New York (2004). http://link.springer.com/chapter/10.1007/978-1-4757-4305-0_9
Kumaran, G., Allan, J.: Text classification and named entities for new event detection. In: Proceedings of the 27th Annual International Conference on Research and Development in Information Retrieval, SIGIR 2004, pp. 297–304 (2004). http://portal.acm.org/citation.cfm?doid=1008992.1009044
Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? Categories and subject descriptors. Most 112(2), 591–600 (2010). http://portal.acm.org/citation.cfm?doid=1772690.1772751
Lardinois, F.: Readwritesocial: the short lifespan of a tweet: retweets only happen within the first hour (2010). http://readwrite.com/2010/09/29/the_short_lifespan_of_a_tweet_retweets_only_happen. Accessed 2 Apr 2013
Lee, R., Sumiya, K.: Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, pp. 1–10 (2010). http://doi.acm.org/10.1145/1867699.1867701
Leek, T., Schwartz, R., Sista, S.: Probabilistic approaches to topic detection and tracking. In: Topic Detection and Tracking, pp. 67–83 (2002). http://portal.acm.org/citation.cfm?id=772260.772265
Lemire, D.: A better alternative to piecewise linear time series segmentation. In: SIAM Data Mining 2007 (2007)
Li, C., Sun, A., Datta, A.: Twevent: segment-based event detection from tweets. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management - CIKM 2012, New York, USA, p. 155. ACM, New York, October 2012. http://dl.acm.org/citation.cfm?id=2396761.2396785
Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.C.: TEDAS: a Twitter-based event detection and analysis system. In: Kementsietsidis, A., Salles, M.A.V. (eds.) 2012 IEEE 28th International Conference on Data Engineering, pp. 1273–1276. IEEE, April 2012. http://dblp.uni-trier.de/db/conf/icde/icde2012.html#LiLKC12, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6228186
Linguistic Data Consortium: TDT 2004: Annotation Manual - version 1.2, 4 August 2004. http://projects.ldc.upenn.edu/TDT5/Annotation/TDT2004V1.2.pdf
Long, R., Wang, H., Chen, Y., Jin, O., Yu, Y.: Towards effective event detection, tracking and summarization on microblog data. In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds.) WAIM 2011. LNCS, vol. 6897, pp. 652–663. Springer, Heidelberg (2011). http://dl.acm.org/citation.cfm?id=2035562.2035636
Makkonen, J., Ahonen-Myka, H., Salmenkivi, M.: Topic detection and tracking with spatio-temporal evidence. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 251–265. Springer, Heidelberg (2003). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.8469
Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=868688
Massoudi, K., Tsagkias, M., de Rijke, M., Weerkamp, W.: Incorporating query expansion and quality indicators in searching microblog posts, pp. 362–367, April 2011. http://dl.acm.org/citation.cfm?id=1996889.1996936
Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the twitter stream. In: Proceedings of the 2010 International Conference on Management of Data - SIGMOD 2010, p. 1155. ACM, New York (2010). http://portal.acm.org/citation.cfm?id=1807306, http://portal.acm.org/citation.cfm?doid=1807167.1807306
Metzler, D., Cai, C., Hovy, E.: Structured event retrieval over microblog archives. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 646–655 (2012). http://www.aclweb.org/anthology/N12-1083
Mohd, M.: Named entity patterns across news domains. In: BCS IRSG Symposium: Future Directions in Information Access (FDIA), pp. 1–6 (2007). http://www.mendeley.com/research/named-entity-patterns-across-news-domains/
Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends Theoret. Comput. Sci. 1(2), 117–236 (2005). http://www.nowpublishers.com/product.aspx?product=TCS&doi=0400000002
Osborne, M., Lavrenko, V., Petrovic, S., Osborne, M., Lavrenko, V.: Using paraphrases for improving first story detection in news and Twitter. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies, pp. 338–346. The Association for Computational Linguistics (2012). http://www.aclweb.org/anthology/N12-1034
Osborne, M., Petrovic, S., McCreadie, R., Macdonald, C., Ounis, I.: Bieber no more: first story detection using Twitter and Wikipedia. In: Proceedings of TAIA 2012 (2012)
Ozdikis, O., Senkul, P., Oguztuzun, H.: Semantic expansion of hashtags for enhanced event detection in Twitter. In: The First International Workshop on Online Social Systems (WOSS 2012) (2012)
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. World Wide Web Internet Web Inf. Syst. 54, 1–17 (1998). http://ilpubs.stanford.edu:8090/422
Pan, C.C., Mitra, P.: Event detection with spatial latent dirichlet allocation. In: Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries, vol. 20, pp. 349–358 (2011). http://portal.acm.org/citation.cfm?id=1315460
Paranjpe, D.: Learning document aboutness from implicit user feedback and document structure. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, p. 365 (2009). http://dl.acm.org/citation.cfm?id=1645953.1646002
Petrovic, S., Osborne, M., Lavrenko, V.: Streaming first story detection with application to twitter. In: Proceedings of NAACL (2010). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.170.9438&rep=rep1&type=pdf
Petrovic, S.: Real-time event detection in massive streams. Ph.D. thesis, University of Edinburgh (2012). http://homepages.inf.ed.ac.uk/s0894589/petrovic-thesis.pdf
Petrovic, S., Osborne, M., Lavrenko, V.: Streaming first story detection with application to twitter. In: HLT-NAACL, pp. 181–189. The Association for Computational Linguistics (2010)
Petrovic, S., Osborne, M., McCreadie, R., Macdonald, C., Ounis, I., Shrimpton, L.: Can Twitter replace newswire for breaking news? In: 7th International AAAI Conference on Web and Social Media (ICWSM) (2013)
Phuvipadawat, S., Murata, T.: Breaking news detection and tracking in Twitter. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2010, vol. 3, pp. 120–123. IEEE, August 2010. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5616930
Li, P., Burges, C.J.C., Wu, Q.: McRank: learning to rank using multiple classification and gradient boosting. In: Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 3–6 December 2007. http://www.researchgate.net/publication/221619438_McRank_Learning_to_Rank_Using_Multiple_Classification_and_Gradient_Boosting, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.6630
Pohl, D., Bouchachia, A., Hellwagner, H.: Automatic identification of crisis-related sub-events using clustering. In: Proceedings - 2012 11th International Conference on Machine Learning and Applications, ICMLA 2012, vol. 2, pp. 333–338 (2012)
Popescu, A.M., Pennacchiotti, M.: Detecting controversial events from Twitter. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management - CIKM 2010, New York, USA, p. 1873 (2010). http://dl.acm.org/citation.cfm?id=1871751, http://portal.acm.org/citation.cfm?doid=1871437.1871751
Popescu, A.M., Pennacchiotti, M., Paranjpe, D.: Extracting events and event descriptions from Twitter. In: Proceedings of the 20th International Conference Companion on World Wide Web - WWW 2011, New York, USA, p. 105. ACM, New York, March 2011. http://dl.acm.org/citation.cfm?id=1963192.1963246
Raimond, Y., Abdallah, S.: The event ontology (2007). http://motools.sf.net/event
Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cambridge (2012). http://www.amazon.de/Mining-Massive-Datasets-Anand-Rajaraman/dp/1107015359/ref=sr_1_1?ie=UTF8&qid=1350890245&sr=8-1
Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place semantics from flickr tags. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2007, 103 pages (2007)
Ritter, A., Clark, S., Mausam, Etzioni, O.: Named entity recognition in tweets: an experimental study. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 1524–1534 (2011). http://www.aclweb.org/anthology/D11-1141
Ritter, A., Etzioni, O., Clark, S.: Open domain event extraction from Twitter. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2012, p. 1104 (2012). http://dl.acm.org/citation.cfm?id=2339530.2339704
Robinson, B., Power, R., Cameron, M.: A sensitive Twitter earthquake detector. In: WWW 2013 Companion - Proceedings of the 22nd International Conference on World Wide Web, pp. 999–1002 (2013). http://www.scopus.com/inward/record.url?eid=2-s2.0-84893039051&partnerID=tZOtx3y1
Sahlgren, M.: Vector-based semantic analysis: representing word meaning based on random labels. In: ESSLI Workshop on Semantic Knowledge Acquistion and Categorization (2002). http://www.sics.se/~mange/papers/VBSA_Esslli.ps
Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM (2010). http://dl.acm.org/citation.cfm?id=1772690.1772777
Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D., Sperling, J.: TwitterStand: news in tweets. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS 2009, New York, USA, vol. 156, p. 42 (2009). http://portal.acm.org/citation.cfm?id=1653781, http://portal.acm.org/citation.cfm?doid=1653771.1653781
Sayyadi, H., Hurst, M., Maykov, A., Livelabs, M.: Event detection and tracking in social streams. In: Proceedings of International Conference on Weblogs and Social Media (ICWSM), pp. 311–314 (2009). http://www.aaai.org/ocs/index.php/ICWSM/09/paper/viewFile/170/493
Schonfeld, E.: Techcrunch: mining the thought stream (2009). http://techcrunch.com/2009/02/15/mining-the-thought-stream. Accessed 9 July 2013
Snowsill, T., Nicart, F., Stefani, M., De Bie, T., Cristianini, N.: Finding surprising patterns in textual data streams. In: 2010 2nd International Workshop on Cognitive Information Processing, pp. 405–410, June 2010. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5604085
Strassel, S.: Topic Detection & Traking (TDT-5) (2004). http://www.ldc.upenn.edu/Projects/TDT2004
Tanev, H., Ehrmann, M., Piskorski, J., Zavarella, V.: Enhancing event descriptions through Twitter mining. In: Sixth International AAAI Conference on Weblogs and Social Media, pp. 587–590 (2012). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM12/paper/view/4631\(\backslash \)n, http://www.aaai.org/ocs/index.php/ICWSM/ICWSM12/paper/view/4631/5065
Baldwin, T., Paul Cook, M., Baldwin, T., Cook, P., Lui, M., Mackinlay, A., Wang, L.: How noisy social media text, how diffrnt social media sources? In: Proceedings of IJCNLP 2013, pp. 356–364 (2013). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.385.1683
Wang, X., Grimson, E.: Spatial latent Dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 20, pp. 1–8 (2007). http://people.csail.mit.edu/xgwang/papers/STLDA.pdf
Wang, X., Zhai, C., Hu, X., Sproat, R.: Mining correlated burstytopic patterns from coordinated text streams. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 784–793 (2007). http://dl.acm.org/citation.cfm?id=1281276\(\backslash \)npapers2://publication/uuid/A6A05DF5-1873-4DC4-BAB3-F73712691FCA
Weng, J., Yao, Y., Leonardi, E., Lee, F.: Event detection in Twitter. Development 98, 401–408 (2011). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/download/2767/3299
Wikipedia: Facebook — Wikipedia, the free encyclopedia (2013). http://en.wikipedia.org/w/index.php?title=Facebook&oldid=548760277. Accessed 7 Apr 2013
Wikipedia: Google+ — Wikipedia, the free encyclopedia (2013). http://en.wikipedia.org/w/index.php?title=Google%2B&oldid=548920007. Accessed 7 Apr 2013
Wikipedia: Linkedin — Wikipedia, the free encyclopedia (2013). http://en.wikipedia.org/w/index.php?title=LinkedIn&oldid=549175950. Accessed 7 Apr 2013
Wikipedia: Twitter — Wikipedia, the free encyclopedia (2013). http://en.wikipedia.org/w/index.php?title=Twitter&oldid=549164139. Accessed 7 Apr 2013
Yang, C.C., Shi, X., Wei, C.P.: Discovering event evolution graphs from news corpora. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39, 850–863 (2009)
Yang, Y., Carbonell, J., Brown, R., Pierce, T., Archibald, B., Liu, X.: Learning approaches for detecting and tracking news events (1999)
Yang, Y., Pierce, T.T., Carbonell, J.G.: A study of retrospective and on-line event detection. In: SIGIR 1998: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Melbourne, Australia, 24–28 August 1998, pp. 28–36. ACM, New York (1998). http://portal.acm.org/citation.cfm?doid=290941.290953
Yang, Y., Zhang, J., Carbonell, J., Jin, C.: Topic-conditioned novelty detection. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2002, pp. 688–693 (2002). http://dl.acm.org/citation.cfm?id=775047.775150
Yao, L., Mimno, D., McCallum, A.: Efficient methods for topic model inference on streaming document collections. In: Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining, 2009, vol. 4, p. 937 (2009). http://portal.acm.org/citation.cfm?doid=1557019.1557121
Zhao, Q., Chen, B., Mitra, P.: Temporal and information flow based event detection from social text streams. In: Proceedings of the 22nd National Conference on Artificial Intelligence - AAAI 2007, vol. 2, pp. 1501–1506. AAAI Press (2007). http://www.aaai.org/Papers/AAAI/2007/AAAI07-238.pdf
Acknowledgements
This work was supported by national funds, through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT), and by European Commission through the project MAESTRA (Grant number ICT-2013-612944).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Cordeiro, M., Gama, J. (2016). Online Social Networks Event Detection: A Survey. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds) Solving Large Scale Learning Tasks. Challenges and Algorithms. Lecture Notes in Computer Science(), vol 9580. Springer, Cham. https://doi.org/10.1007/978-3-319-41706-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-41706-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41705-9
Online ISBN: 978-3-319-41706-6
eBook Packages: Computer ScienceComputer Science (R0)