Abstract
Exploratory analysis of ubiquitous data and social media includes resources created by humans as well as those generated by sensor devices. This paper reviews recent advances concerning according approaches and methods, and provides additional review and discussion. Specifically, we focus on exploratory pattern analytics implemented using subgroup discovery and exceptional model mining methods, and put these into context. We summarize recent work on description-oriented community detection, spatio-semantic analysis using local exceptionality detection, and class association rule mining for activity recognition. Furthermore, we discuss results and implications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agresti, A.: An Introduction to Categorical Data Analysis. Wiley-Blackwell, Hoboken (2007)
Atzmueller, M.: Knowledge-Intensive Subgroup Mining - Techniques for Automatic and Interactive Discovery, Dissertations in Artificial Intelligence-Infix (Diski), vol. 307. IOS Press, March 2007
Atzmueller, M.: Mining social media. Informatik Spektrum 35(2), 132–135 (2012)
Atzmueller, M.: Mining social media: key players, sentiments, and communities. WIREs: Data Min. Knowl. Disc. 2, 411–419 (2012)
Atzmueller, M.: Onto collective intelligence in social media: exemplary applications and perspectives. In: Proceedings of 3rd International Workshop on Modeling Social Media Hypertext (MSM 2012). ACM, New York (2012)
Atzmueller, M.: Data mining on social interaction networks. J. Data Min. Digital Humanit. 1, June 2014
Atzmueller, M.: Social behavior in mobile social networks: characterizing links, roles and communities. In: Chin, A., Zhang, D. (eds.) Mobile Social Networking: An Innovative Approach. Computational Social Sciences, pp. 65–78. Springer, Heidelberg (2014)
Atzmueller, M.: Subgroup discovery - advanced review. WIREs: Data Min. Knowl. Disc. 5(1), 35–49 (2015)
Atzmüller, M., Baumeister, J., Hemsing, A., Richter, E.-J., Puppe, F.: Subgroup mining for interactive knowledge refinement. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 453–462. Springer, Heidelberg (2005)
Atzmueller, M., Baumeister, J., Puppe, F.: Evaluation of two strategies for case-based diagnosis handling multiple faults. In: Proceedings of 2nd Conference Professional Knowledge Management (WM 2003), Luzern, Switzerland (2003)
Atzmüller, M., Baumeister, J., Puppe, F.: Quality measures and semi-automatic mining of diagnostic rule bases. In: Seipel, D., Hanus, M., Geske, U., Bartenstein, O. (eds.) INAP/WLP 2004. LNCS (LNAI), vol. 3392, pp. 65–78. Springer, Heidelberg (2005)
Atzmueller, M., Baumeister, J., Puppe, F.: Semi-automatic learning of simple diagnostic scores utilizing complexity measures. Artif. Intell. Med. 37(1), 19–30 (2006). Special Issue on Intelligent Data Analysis in Medicine
Atzmueller, M., Becker, M., Doerfel, S., Kibanov, M., Hotho, A., Macek, B.E., Mitzlaff, F., Mueller, J., Scholz, C., Stumme, G.: Ubicon: observing social and physical activities. In: Proceedings of IEEE International Conference on Cyber, Physical and Social Computing (CPSCom), pp. 317–324. IEEE Computer Society, Washington, D.C. (2012)
Atzmueller, M., Becker, M., Kibanov, M., Scholz, C., Doerfel, S., Hotho, A., Macek, B.E., Mitzlaff, F., Mueller, J., Stumme, G.: Ubicon and its applications for ubiquitous social computing. New Rev. Hypermedia Multimedia 20(1), 53–77 (2014)
Atzmueller, M., Benz, D., Hotho, A., Stumme, G.: Towards mining semantic maturity in social bookmarking systems. In: Proceedings of Workshop on Social Data on the Web, 10th International Semantic Web Conference, ISWC, Bonn, Germany (2011)
Atzmueller, M., Doerfel, S., Hotho, A., Mitzlaff, F., Stumme, G.: Face-to-face contacts at a conference: dynamics of communities and roles. In: Atzmueller, M., Chin, A., Helic, D., Hotho, A. (eds.) MUSE 2011 and MSM 2011. LNCS, vol. 7472, pp. 21–39. Springer, Heidelberg (2012)
Atzmueller, M., Doerfel, S., Mitzlaff, F.: Description-oriented community detection using exhaustive subgroup discovery. Inf. Sci. 329, 965–984 (2016)
Atzmueller, M., Kibanov, M., Hayat, N., Trojahn, M., Kroll, D.: Adaptive class association rule mining for human activity recognition. In: Proceedings of 6th International Workshop on Mining Ubiquitous and Social Environments (MUSE), ECML/PKDD, Porto, Portugal (2015)
Atzmueller, M., Lemmerich, F.: Fast subgroup discovery for continuous target concepts. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 35–44. Springer, Heidelberg (2009)
Atzmueller, M., Lemmerich, F.: VIKAMINE – open-source subgroup discovery, pattern mining, and analytics. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 842–845. Springer, Heidelberg (2012)
Atzmueller, M., Lemmerich, F.: Exploratory pattern mining on social media using geo-references and social tagging information. Int. J. Web Sci. 2(1–2), 80–112 (2013)
Atzmueller, M., Lemmerich, F., Reutelshoefer, J., Puppe, F.: Wiki-enabled semantic data mining - task design, evaluation and refinement. In: Proceedings of 2nd International Workshop on Design, Evaluation and Refinement of Intelligent Systems (DERIS 2009), Krakow, Poland, vol. 545. CEUR-WS (2009)
Atzmueller, M., Mitzlaff, F.: Efficient descriptive community mining. In: Proceedings of 24th International FLAIRS Conference, pp. 459–464. AAAI Press, Palo Alto (2011)
Atzmueller, M., Mueller, J., Becker, M.: Exploratory subgroup analytics on ubiquitous data. In: Atzmueller, M., Chin, A., Scholz, C., Trattner, C. (eds.) MUSE/MSM 2013, LNAI 8940. LNCS (LNAI), vol. 8940, pp. 1–20. Springer, Heidelberg (2015)
Atzmueller, M., Puppe, F.: Semi-automatic visual subgroup mining using VIKAMINE. J. Univ. Comput. Sci. 11(11), 1752–1765 (2005)
Atzmüller, M., Puppe, F.: A methodological view on knowledge-intensive subgroup discovery. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 318–325. Springer, Heidelberg (2006)
Atzmüller, M., Puppe, F.: SD-Map – a fast algorithm for exhaustive subgroup discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 6–17. Springer, Heidelberg (2006)
Atzmueller, M., Puppe, F.: A case-based approach for characterization and analysis of subgroup patterns. J. Appl. Intell. 28(3), 210–221 (2008)
Atzmueller, M., Puppe, F.: Semi-automatic refinement and assessment of subgroup patterns. In: Proceedings of 21st International Florida Artificial Intelligence Research Society Conference, pp. 518–523. AAAI Press, Palo Alto (2008)
Atzmueller, M., Puppe, F., Buscher, H.P.: Towards knowledge-intensive subgroup discovery. In: Proceedings of LWA 2004, Workshop KDML, Germany, pp. 117–123 (2004)
Atzmueller, M., Puppe, F., Buscher, H.P.: Exploiting background knowledge for knowledge-intensive subgroup discovery. In: Proceedings of 19th International Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland, pp. 647–652 (2005)
Atzmueller, M., Puppe, F., Buscher, H.P.: Profiling examiners using intelligent subgroup mining. In: Proceedings of 10th International Workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-2005), Aberdeen, Scotland, pp. 46–51 (2005)
Atzmueller, M., Schmidt, A., Kibanov, M.: DASHTrails: an approach for modeling and analysis of distribution-adapted sequential hypotheses and trails. In: Proceedings of WWW 2016 (Companion). IW3C2/ACM (2016)
Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M.: Mining recent temporal patterns for event detection in multivariate time series data. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 280–288. ACM, New York (2012)
Benz, D., Hotho, A., Jäschke, R., Krause, B., Mitzlaff, F., Schmitz, C., Stumme, G.: The social bookmark and publication management system bibsonomy. VLDB 19, 849–875 (2010)
Cohen, W.W.: Fast effective rule induction. In: Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995)
Duivesteijn, W., Knobbe, A., Feelders, A., van Leeuwen, M.: Subgroup discovery meets bayesian networks - an exceptional model mining approach. In: Proceedings of International Conference on Data Mining (ICDM), pp. 158–167. IEEE, Washington, D.C. (2010)
Duivesteijn, W., Feelders, A., Knobbe, A.J.: Different slopes for different folks: mining for exceptional regression models with Cook’s distance. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 868–876. ACM, New York (2012)
Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
Freeman, L.: Segregation in social networks. Sociol. Methodol. Res. 6(4), 411 (1978)
Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 1–32 (2006)
Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12, 103018 (2010)
Grosskreutz, H., Rüping, S., Wrobel, S.: Tight optimistic estimates for fast subgroup discovery. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 440–456. Springer, Heidelberg (2008)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Chen, W., Naughton, J., Bernstein, P.A. (eds.) Proceedings of SIGMOD, pp. 1–12. ACM Press, May 2000
Hotelling, H.: The generalization of student’s ratio. Ann. Math. Statist. 2(3), 360–378 (1931)
Hotho, A., Pedersen, R.U., Wurst, M.: Ubiquitous data. In: May, M., Saitta, L. (eds.) Ubiquitous Knowledge Discovery. LNCS, vol. 6202, pp. 61–74. Springer, Heidelberg (2010)
Kibanov, M., Atzmueller, M., Illig, J., Scholz, C., Barrat, A., Cattuto, C., Stumme, G.: Is web content a good proxy for real-life interaction? A case study considering online and offline interactions of computer scientists. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE Press, Boston (2015)
Kibanov, M., Atzmueller, M., Scholz, C., Stumme, G.: On the evolution of contacts and communities in networks of face-to-face proximity. In: Proceedings of IEEE International Conference on Cyber, Physical and Social Computing (CPSCom). IEEE Computer Society, Boston (2013)
Kibanov, M., Atzmueller, M., Scholz, C., Stumme, G.: Temporal evolution of contacts and communities in networks of face-to-face human interactions. China Inf. Sci. 57, 1–17 (2014)
Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI Press (1996)
Klösgen, W.: Subgroup discovery. In: Handbook of Data Mining and Knowledge Discovery, chap. 16.3. Oxford University Press, New York (2002)
Knobbe, A.J., Cremilleux, B., Fürnkranz, J., Scholz, M.: From local patterns to global models: the LeGo approach to data mining. In: Proceedings of the ECML/PKDD-08 Workshop (LeGo-2008), pp. 1–16 (2008)
Koyuturk, M., Szpankowski, W., Grama, A.: Assessing significance of connectivity and conservation in protein interaction networks. J. Comput. Biol. 14(6), 747–764 (2007)
Lavrač, N., Vavpetič, A., Soldatova, L., Trajkovski, I., Kralj Novak, P.: Using ontologies in semantic data mining with SEGS and g-SEGS. In: Proceedings of the 14th International Conference on Discovery Science (DS) (2011)
Leman, D., Feelders, A., Knobbe, A.J.: Exceptional model mining. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 1–16. Springer, Heidelberg (2008)
Lemmerich, F., Atzmueller, M., Puppe, F.: Fast exhaustive subgroup discovery with numerical target concepts. Data Min. Knowl. Disc. 30(3), 711–762 (2015). http://dx.doi.org/10.1007/s10618-015-0436-8
Lemmerich, F., Becker, M., Atzmueller, M.: Generic pattern trees for exhaustive exceptional model mining. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 277–292. Springer, Heidelberg (2012)
Lemmerich, F., Rohlfs, M., Atzmueller, M.: Fast discovery of relevant subgroup patterns. In: Proceedings of International FLAIRS Conference, pp. 428–433. AAAI Press, Palo Alto (2010)
Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. CoRR abs/0810.1355 (2008)
Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on multiple class-association rules. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) Proceedings of International Conference on Data Mining (ICDM), pp. 369–376. IEEE Computer Society (2001)
Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 80–86. AAAI Press, August 1998
May, M., Berendt, B., Cornuéjols, A., Gama, J., Giannotti, F., Hotho, A., Malerba, D., Menesalvas, E., Morik, K., Pedersen, R., et al.: Research challenges in ubiquitous knowledge discovery. In: Next Generation of Data Mining, pp. 131–150 (2008)
McDaid, A., Hurley, N.: Detecting highly overlapping communities with model-based overlapping seed expansion. In: Proceedings of the 2010 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2010, pp. 112–119. IEEE Computer Society, Washington, D.C. (2010)
Mitzlaff, F., Atzmueller, M., Benz, D., Hotho, A., Stumme, G.: Community assessment using evidence networks. In: Atzmueller, M., Hotho, A., Strohmaier, M., Chin, A. (eds.) MUSE/MSM 2010. LNCS, vol. 6904, pp. 79–98. Springer, Heidelberg (2011)
Mitzlaff, F., Atzmueller, M., Hotho, A., Stumme, G.: The social distributional hypothesis. J. Soc. Netw. Anal. Min. 4(216), 1–14 (2014)
Mitzlaff, F., Atzmueller, M., Stumme, G., Hotho, A.: Semantics of user interaction in social media. In: Ghoshal, G., Poncela-Casasnovas, J., Tolksdorf, R. (eds.) Complex Networks IV. SCI, vol. 476, pp. 13–25. Springer, Heidelberg (2013)
Morik, K.: Detecting interesting instances. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 13–23. Springer, Heidelberg (2002)
Morik, K., Boulicaut, J.-F., Siebes, A. (eds.): Local Pattern Detection. LNCS (LNAI), vol. 3539, pp. 115–134. Springer, Heidelberg (2005)
Morik, K., Potamias, G., Moustakis, V., Charissis, G.: Knowledgeable learning using MOBAL: a medical case study. Appl. Artif. Intell. 8(4), 579–592 (1994)
Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)
Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 1–15 (2004)
Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. 38, 321–330 (2004)
Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. U.S.A. 103(23), 8577–8582 (2006)
Piatkowski, N., Lee, S., Morik, K.: Spatio-temporal random fields: compressible representation and distributed estimation. Mach. Learn. 93(1), 115–139 (2013)
Pool, S., Bonchi, F., van Leeuwen, M.: Description-driven community detection. Trans. Intell. Syst. Technol. 5(2), 1–21 (2014)
Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)
R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2009). ISBN: 3-900051-07-0. http://www.R-project.org
Scholz, C., Atzmueller, M., Barrat, A., Cattuto, C., Stumme, G.: New insights and methods for predicting face-to-face contacts. In: Kiciman, E., Ellison, N.B., Hogan, B., Resnick, P., Soboroff, I. (eds.) Proceedings of International AAAI Conference on Weblogs and Social Media. AAAI Press, Palo Alto (2013)
Scholz, C., Atzmueller, M., Stumme, G.: Unsupervised and hybrid approaches for on-line RFID localization with mixed context knowledge. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502, pp. 244–253. Springer, Heidelberg (2014)
Scholz, C., Doerfel, S., Atzmueller, M., Hotho, A., Stumme, G.: Resource-aware on-line RFID localization using proximity data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 129–144. Springer, Heidelberg (2011)
Sulzmann, J.N., Fnkranz, J.: A comparison of techniques for selecting and combining class association rules. In: Baumeister, J., Atzmueller, M. (eds.) Proceedings of LWA, Technical report, Department of Computer Science, University of Wzburg, Germany, vol. 448, pp. 87–93 (2008)
Symeonidis, P., Perentis, C.: Link prediction in multi-modal social networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part III. LNCS, vol. 8726, pp. 147–162. Springer, Heidelberg (2014)
Sez, C., Rodrigues, P., Gama, J., Robles, M., Garcmez, J.: Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Min. Knowl. Disc. 29, 950–975 (2014)
Thabtah, F.: A review of associative classification mining. Knowl. Eng. Rev. 22(1), 37–65 (2007)
Vavpetič, A., Lavrač, N.: Semantic subgroup discovery systems and workflows in the SDM-toolkit. Comput. J. 56(3), 304–320 (2013)
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences, 1st edn. Cambridge University Press, Cambridge (1994)
Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)
Wrobel, S., Morik, K., Joachims, T.: Maschinelles Lernen und Data Mining. Handbuch der Künstlichen Intelligenz 3, 517–597 (2000)
Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: Barbar, D., Kamath, C. (eds.) Proceedings of SIAM International Conference on Data Mining (SDM), pp. 331–335. SIAM (2003)
Zhang, H., Korayem, M., You, E., Crandall, D.J.: Beyond co-occurrence: discovering and visualizing tag relationships from geo-spatial and temporal similarities. In: Proceedings of International Conference on Web Search and Data Mining (WSDM), pp. 33–42. ACM, New York (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Atzmüller, M. (2016). Advances in Exploratory Pattern Analytics on Ubiquitous Data and Social Media. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds) Solving Large Scale Learning Tasks. Challenges and Algorithms. Lecture Notes in Computer Science(), vol 9580. Springer, Cham. https://doi.org/10.1007/978-3-319-41706-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-41706-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41705-9
Online ISBN: 978-3-319-41706-6
eBook Packages: Computer ScienceComputer Science (R0)