Skip to main content

Advances in Exploratory Pattern Analytics on Ubiquitous Data and Social Media

  • Chapter
  • First Online:
Solving Large Scale Learning Tasks. Challenges and Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9580))

  • 1528 Accesses

Abstract

Exploratory analysis of ubiquitous data and social media includes resources created by humans as well as those generated by sensor devices. This paper reviews recent advances concerning according approaches and methods, and provides additional review and discussion. Specifically, we focus on exploratory pattern analytics implemented using subgroup discovery and exceptional model mining methods, and put these into context. We summarize recent work on description-oriented community detection, spatio-semantic analysis using local exceptionality detection, and class association rule mining for activity recognition. Furthermore, we discuss results and implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.bibsonomy.org.

  2. 2.

    http://www.delicious.com.

  3. 3.

    http://last.fm.

  4. 4.

    http://vikamine.org.

  5. 5.

    http://rsubgroup.org.

  6. 6.

    http://www.everyaware.eu.

  7. 7.

    http://www.ubicon.eu.

References

  1. Agresti, A.: An Introduction to Categorical Data Analysis. Wiley-Blackwell, Hoboken (2007)

    Book  MATH  Google Scholar 

  2. Atzmueller, M.: Knowledge-Intensive Subgroup Mining - Techniques for Automatic and Interactive Discovery, Dissertations in Artificial Intelligence-Infix (Diski), vol. 307. IOS Press, March 2007

    Google Scholar 

  3. Atzmueller, M.: Mining social media. Informatik Spektrum 35(2), 132–135 (2012)

    Article  Google Scholar 

  4. Atzmueller, M.: Mining social media: key players, sentiments, and communities. WIREs: Data Min. Knowl. Disc. 2, 411–419 (2012)

    Google Scholar 

  5. Atzmueller, M.: Onto collective intelligence in social media: exemplary applications and perspectives. In: Proceedings of 3rd International Workshop on Modeling Social Media Hypertext (MSM 2012). ACM, New York (2012)

    Google Scholar 

  6. Atzmueller, M.: Data mining on social interaction networks. J. Data Min. Digital Humanit. 1, June 2014

    Google Scholar 

  7. Atzmueller, M.: Social behavior in mobile social networks: characterizing links, roles and communities. In: Chin, A., Zhang, D. (eds.) Mobile Social Networking: An Innovative Approach. Computational Social Sciences, pp. 65–78. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Atzmueller, M.: Subgroup discovery - advanced review. WIREs: Data Min. Knowl. Disc. 5(1), 35–49 (2015)

    Google Scholar 

  9. Atzmüller, M., Baumeister, J., Hemsing, A., Richter, E.-J., Puppe, F.: Subgroup mining for interactive knowledge refinement. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 453–462. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Atzmueller, M., Baumeister, J., Puppe, F.: Evaluation of two strategies for case-based diagnosis handling multiple faults. In: Proceedings of 2nd Conference Professional Knowledge Management (WM 2003), Luzern, Switzerland (2003)

    Google Scholar 

  11. Atzmüller, M., Baumeister, J., Puppe, F.: Quality measures and semi-automatic mining of diagnostic rule bases. In: Seipel, D., Hanus, M., Geske, U., Bartenstein, O. (eds.) INAP/WLP 2004. LNCS (LNAI), vol. 3392, pp. 65–78. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Atzmueller, M., Baumeister, J., Puppe, F.: Semi-automatic learning of simple diagnostic scores utilizing complexity measures. Artif. Intell. Med. 37(1), 19–30 (2006). Special Issue on Intelligent Data Analysis in Medicine

    Article  Google Scholar 

  13. Atzmueller, M., Becker, M., Doerfel, S., Kibanov, M., Hotho, A., Macek, B.E., Mitzlaff, F., Mueller, J., Scholz, C., Stumme, G.: Ubicon: observing social and physical activities. In: Proceedings of IEEE International Conference on Cyber, Physical and Social Computing (CPSCom), pp. 317–324. IEEE Computer Society, Washington, D.C. (2012)

    Google Scholar 

  14. Atzmueller, M., Becker, M., Kibanov, M., Scholz, C., Doerfel, S., Hotho, A., Macek, B.E., Mitzlaff, F., Mueller, J., Stumme, G.: Ubicon and its applications for ubiquitous social computing. New Rev. Hypermedia Multimedia 20(1), 53–77 (2014)

    Article  Google Scholar 

  15. Atzmueller, M., Benz, D., Hotho, A., Stumme, G.: Towards mining semantic maturity in social bookmarking systems. In: Proceedings of Workshop on Social Data on the Web, 10th International Semantic Web Conference, ISWC, Bonn, Germany (2011)

    Google Scholar 

  16. Atzmueller, M., Doerfel, S., Hotho, A., Mitzlaff, F., Stumme, G.: Face-to-face contacts at a conference: dynamics of communities and roles. In: Atzmueller, M., Chin, A., Helic, D., Hotho, A. (eds.) MUSE 2011 and MSM 2011. LNCS, vol. 7472, pp. 21–39. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Atzmueller, M., Doerfel, S., Mitzlaff, F.: Description-oriented community detection using exhaustive subgroup discovery. Inf. Sci. 329, 965–984 (2016)

    Article  Google Scholar 

  18. Atzmueller, M., Kibanov, M., Hayat, N., Trojahn, M., Kroll, D.: Adaptive class association rule mining for human activity recognition. In: Proceedings of 6th International Workshop on Mining Ubiquitous and Social Environments (MUSE), ECML/PKDD, Porto, Portugal (2015)

    Google Scholar 

  19. Atzmueller, M., Lemmerich, F.: Fast subgroup discovery for continuous target concepts. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 35–44. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Atzmueller, M., Lemmerich, F.: VIKAMINE – open-source subgroup discovery, pattern mining, and analytics. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 842–845. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Atzmueller, M., Lemmerich, F.: Exploratory pattern mining on social media using geo-references and social tagging information. Int. J. Web Sci. 2(1–2), 80–112 (2013)

    Article  Google Scholar 

  22. Atzmueller, M., Lemmerich, F., Reutelshoefer, J., Puppe, F.: Wiki-enabled semantic data mining - task design, evaluation and refinement. In: Proceedings of 2nd International Workshop on Design, Evaluation and Refinement of Intelligent Systems (DERIS 2009), Krakow, Poland, vol. 545. CEUR-WS (2009)

    Google Scholar 

  23. Atzmueller, M., Mitzlaff, F.: Efficient descriptive community mining. In: Proceedings of 24th International FLAIRS Conference, pp. 459–464. AAAI Press, Palo Alto (2011)

    Google Scholar 

  24. Atzmueller, M., Mueller, J., Becker, M.: Exploratory subgroup analytics on ubiquitous data. In: Atzmueller, M., Chin, A., Scholz, C., Trattner, C. (eds.) MUSE/MSM 2013, LNAI 8940. LNCS (LNAI), vol. 8940, pp. 1–20. Springer, Heidelberg (2015)

    Google Scholar 

  25. Atzmueller, M., Puppe, F.: Semi-automatic visual subgroup mining using VIKAMINE. J. Univ. Comput. Sci. 11(11), 1752–1765 (2005)

    Google Scholar 

  26. Atzmüller, M., Puppe, F.: A methodological view on knowledge-intensive subgroup discovery. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 318–325. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Atzmüller, M., Puppe, F.: SD-Map – a fast algorithm for exhaustive subgroup discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 6–17. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Atzmueller, M., Puppe, F.: A case-based approach for characterization and analysis of subgroup patterns. J. Appl. Intell. 28(3), 210–221 (2008)

    Article  Google Scholar 

  29. Atzmueller, M., Puppe, F.: Semi-automatic refinement and assessment of subgroup patterns. In: Proceedings of 21st International Florida Artificial Intelligence Research Society Conference, pp. 518–523. AAAI Press, Palo Alto (2008)

    Google Scholar 

  30. Atzmueller, M., Puppe, F., Buscher, H.P.: Towards knowledge-intensive subgroup discovery. In: Proceedings of LWA 2004, Workshop KDML, Germany, pp. 117–123 (2004)

    Google Scholar 

  31. Atzmueller, M., Puppe, F., Buscher, H.P.: Exploiting background knowledge for knowledge-intensive subgroup discovery. In: Proceedings of 19th International Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland, pp. 647–652 (2005)

    Google Scholar 

  32. Atzmueller, M., Puppe, F., Buscher, H.P.: Profiling examiners using intelligent subgroup mining. In: Proceedings of 10th International Workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-2005), Aberdeen, Scotland, pp. 46–51 (2005)

    Google Scholar 

  33. Atzmueller, M., Schmidt, A., Kibanov, M.: DASHTrails: an approach for modeling and analysis of distribution-adapted sequential hypotheses and trails. In: Proceedings of WWW 2016 (Companion). IW3C2/ACM (2016)

    Google Scholar 

  34. Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M.: Mining recent temporal patterns for event detection in multivariate time series data. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 280–288. ACM, New York (2012)

    Google Scholar 

  35. Benz, D., Hotho, A., Jäschke, R., Krause, B., Mitzlaff, F., Schmitz, C., Stumme, G.: The social bookmark and publication management system bibsonomy. VLDB 19, 849–875 (2010)

    Article  Google Scholar 

  36. Cohen, W.W.: Fast effective rule induction. In: Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995)

    Google Scholar 

  37. Duivesteijn, W., Knobbe, A., Feelders, A., van Leeuwen, M.: Subgroup discovery meets bayesian networks - an exceptional model mining approach. In: Proceedings of International Conference on Data Mining (ICDM), pp. 158–167. IEEE, Washington, D.C. (2010)

    Google Scholar 

  38. Duivesteijn, W., Feelders, A., Knobbe, A.J.: Different slopes for different folks: mining for exceptional regression models with Cook’s distance. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 868–876. ACM, New York (2012)

    Google Scholar 

  39. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  40. Freeman, L.: Segregation in social networks. Sociol. Methodol. Res. 6(4), 411 (1978)

    Article  Google Scholar 

  41. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 1–32 (2006)

    Article  Google Scholar 

  42. Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12, 103018 (2010)

    Article  Google Scholar 

  43. Grosskreutz, H., Rüping, S., Wrobel, S.: Tight optimistic estimates for fast subgroup discovery. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 440–456. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  44. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Chen, W., Naughton, J., Bernstein, P.A. (eds.) Proceedings of SIGMOD, pp. 1–12. ACM Press, May 2000

    Google Scholar 

  45. Hotelling, H.: The generalization of student’s ratio. Ann. Math. Statist. 2(3), 360–378 (1931)

    Article  MATH  Google Scholar 

  46. Hotho, A., Pedersen, R.U., Wurst, M.: Ubiquitous data. In: May, M., Saitta, L. (eds.) Ubiquitous Knowledge Discovery. LNCS, vol. 6202, pp. 61–74. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  47. Kibanov, M., Atzmueller, M., Illig, J., Scholz, C., Barrat, A., Cattuto, C., Stumme, G.: Is web content a good proxy for real-life interaction? A case study considering online and offline interactions of computer scientists. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE Press, Boston (2015)

    Google Scholar 

  48. Kibanov, M., Atzmueller, M., Scholz, C., Stumme, G.: On the evolution of contacts and communities in networks of face-to-face proximity. In: Proceedings of IEEE International Conference on Cyber, Physical and Social Computing (CPSCom). IEEE Computer Society, Boston (2013)

    Google Scholar 

  49. Kibanov, M., Atzmueller, M., Scholz, C., Stumme, G.: Temporal evolution of contacts and communities in networks of face-to-face human interactions. China Inf. Sci. 57, 1–17 (2014)

    Article  Google Scholar 

  50. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI Press (1996)

    Google Scholar 

  51. Klösgen, W.: Subgroup discovery. In: Handbook of Data Mining and Knowledge Discovery, chap. 16.3. Oxford University Press, New York (2002)

    Google Scholar 

  52. Knobbe, A.J., Cremilleux, B., Fürnkranz, J., Scholz, M.: From local patterns to global models: the LeGo approach to data mining. In: Proceedings of the ECML/PKDD-08 Workshop (LeGo-2008), pp. 1–16 (2008)

    Google Scholar 

  53. Koyuturk, M., Szpankowski, W., Grama, A.: Assessing significance of connectivity and conservation in protein interaction networks. J. Comput. Biol. 14(6), 747–764 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lavrač, N., Vavpetič, A., Soldatova, L., Trajkovski, I., Kralj Novak, P.: Using ontologies in semantic data mining with SEGS and g-SEGS. In: Proceedings of the 14th International Conference on Discovery Science (DS) (2011)

    Google Scholar 

  55. Leman, D., Feelders, A., Knobbe, A.J.: Exceptional model mining. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 1–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  56. Lemmerich, F., Atzmueller, M., Puppe, F.: Fast exhaustive subgroup discovery with numerical target concepts. Data Min. Knowl. Disc. 30(3), 711–762 (2015). http://dx.doi.org/10.1007/s10618-015-0436-8

    Article  MathSciNet  Google Scholar 

  57. Lemmerich, F., Becker, M., Atzmueller, M.: Generic pattern trees for exhaustive exceptional model mining. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 277–292. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  58. Lemmerich, F., Rohlfs, M., Atzmueller, M.: Fast discovery of relevant subgroup patterns. In: Proceedings of International FLAIRS Conference, pp. 428–433. AAAI Press, Palo Alto (2010)

    Google Scholar 

  59. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. CoRR abs/0810.1355 (2008)

    Google Scholar 

  60. Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on multiple class-association rules. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) Proceedings of International Conference on Data Mining (ICDM), pp. 369–376. IEEE Computer Society (2001)

    Google Scholar 

  61. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 80–86. AAAI Press, August 1998

    Google Scholar 

  62. May, M., Berendt, B., Cornuéjols, A., Gama, J., Giannotti, F., Hotho, A., Malerba, D., Menesalvas, E., Morik, K., Pedersen, R., et al.: Research challenges in ubiquitous knowledge discovery. In: Next Generation of Data Mining, pp. 131–150 (2008)

    Google Scholar 

  63. McDaid, A., Hurley, N.: Detecting highly overlapping communities with model-based overlapping seed expansion. In: Proceedings of the 2010 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2010, pp. 112–119. IEEE Computer Society, Washington, D.C. (2010)

    Google Scholar 

  64. Mitzlaff, F., Atzmueller, M., Benz, D., Hotho, A., Stumme, G.: Community assessment using evidence networks. In: Atzmueller, M., Hotho, A., Strohmaier, M., Chin, A. (eds.) MUSE/MSM 2010. LNCS, vol. 6904, pp. 79–98. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  65. Mitzlaff, F., Atzmueller, M., Hotho, A., Stumme, G.: The social distributional hypothesis. J. Soc. Netw. Anal. Min. 4(216), 1–14 (2014)

    Google Scholar 

  66. Mitzlaff, F., Atzmueller, M., Stumme, G., Hotho, A.: Semantics of user interaction in social media. In: Ghoshal, G., Poncela-Casasnovas, J., Tolksdorf, R. (eds.) Complex Networks IV. SCI, vol. 476, pp. 13–25. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  67. Morik, K.: Detecting interesting instances. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 13–23. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  68. Morik, K., Boulicaut, J.-F., Siebes, A. (eds.): Local Pattern Detection. LNCS (LNAI), vol. 3539, pp. 115–134. Springer, Heidelberg (2005)

    Book  Google Scholar 

  69. Morik, K., Potamias, G., Moustakis, V., Charissis, G.: Knowledgeable learning using MOBAL: a medical case study. Appl. Artif. Intell. 8(4), 579–592 (1994)

    Article  Google Scholar 

  70. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  71. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 1–15 (2004)

    Article  Google Scholar 

  72. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. 38, 321–330 (2004)

    Article  Google Scholar 

  73. Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. U.S.A. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  74. Piatkowski, N., Lee, S., Morik, K.: Spatio-temporal random fields: compressible representation and distributed estimation. Mach. Learn. 93(1), 115–139 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  75. Pool, S., Bonchi, F., van Leeuwen, M.: Description-driven community detection. Trans. Intell. Syst. Technol. 5(2), 1–21 (2014)

    Article  Google Scholar 

  76. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  77. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2009). ISBN: 3-900051-07-0. http://www.R-project.org

  78. Scholz, C., Atzmueller, M., Barrat, A., Cattuto, C., Stumme, G.: New insights and methods for predicting face-to-face contacts. In: Kiciman, E., Ellison, N.B., Hogan, B., Resnick, P., Soboroff, I. (eds.) Proceedings of International AAAI Conference on Weblogs and Social Media. AAAI Press, Palo Alto (2013)

    Google Scholar 

  79. Scholz, C., Atzmueller, M., Stumme, G.: Unsupervised and hybrid approaches for on-line RFID localization with mixed context knowledge. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502, pp. 244–253. Springer, Heidelberg (2014)

    Google Scholar 

  80. Scholz, C., Doerfel, S., Atzmueller, M., Hotho, A., Stumme, G.: Resource-aware on-line RFID localization using proximity data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 129–144. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  81. Sulzmann, J.N., Fnkranz, J.: A comparison of techniques for selecting and combining class association rules. In: Baumeister, J., Atzmueller, M. (eds.) Proceedings of LWA, Technical report, Department of Computer Science, University of Wzburg, Germany, vol. 448, pp. 87–93 (2008)

    Google Scholar 

  82. Symeonidis, P., Perentis, C.: Link prediction in multi-modal social networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part III. LNCS, vol. 8726, pp. 147–162. Springer, Heidelberg (2014)

    Google Scholar 

  83. Sez, C., Rodrigues, P., Gama, J., Robles, M., Garcmez, J.: Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Min. Knowl. Disc. 29, 950–975 (2014)

    Article  MathSciNet  Google Scholar 

  84. Thabtah, F.: A review of associative classification mining. Knowl. Eng. Rev. 22(1), 37–65 (2007)

    Article  Google Scholar 

  85. Vavpetič, A., Lavrač, N.: Semantic subgroup discovery systems and workflows in the SDM-toolkit. Comput. J. 56(3), 304–320 (2013)

    Article  Google Scholar 

  86. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences, 1st edn. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  87. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  88. Wrobel, S., Morik, K., Joachims, T.: Maschinelles Lernen und Data Mining. Handbuch der Künstlichen Intelligenz 3, 517–597 (2000)

    Google Scholar 

  89. Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: Barbar, D., Kamath, C. (eds.) Proceedings of SIAM International Conference on Data Mining (SDM), pp. 331–335. SIAM (2003)

    Google Scholar 

  90. Zhang, H., Korayem, M., You, E., Crandall, D.J.: Beyond co-occurrence: discovering and visualizing tag relationships from geo-spatial and temporal similarities. In: Proceedings of International Conference on Web Search and Data Mining (WSDM), pp. 33–42. ACM, New York (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Atzmüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Atzmüller, M. (2016). Advances in Exploratory Pattern Analytics on Ubiquitous Data and Social Media. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds) Solving Large Scale Learning Tasks. Challenges and Algorithms. Lecture Notes in Computer Science(), vol 9580. Springer, Cham. https://doi.org/10.1007/978-3-319-41706-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41706-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41705-9

  • Online ISBN: 978-3-319-41706-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics