Skip to main content

Contextual Search and Exploration

  • Chapter
  • First Online:
Information Retrieval (RuSSIR 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 573))

Included in the following conference series:

  • 761 Accesses

Abstract

Personalized (mobile) devices are radically changing information access tools, with rich context allowing for far more powerful, personalized search. Rather than retrieving a “document” on the topic of a “query,” the rich contextual information allows for tailored search and recommendation, and solve user’s complex tasks by taking into account complex constraints, exploring options, and combining individual answers into a coherent whole. This paper reports on a RuSSIR 2015 course covering the challenges of contextual search and recommendation, with a concrete focus on the venue recommendation task as run as part of TREC 2012–2015. It consisted of both lectures and hands-on “hackathon” sessions with data derived from the TREC task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 12.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    GeoCLEF 2005–2008, see: http://www.clef-initiative.eu/track/geoclef.

  2. 2.

    NTCIR 8–9, 2010–2011, see: http://metadata.berkeley.edu/NTCIR-GeoTime/.

  3. 3.

    See: http://sites.google.com/site/treccontext/.

  4. 4.

    See: http://trec.nist.gov/.

  5. 5.

    The third session introduced the hackathon and the tools and data available for it, and will be discussed together with the outcome of the hackathon in the next section.

  6. 6.

    See: http://www.studyportals.eu/.

  7. 7.

    See: http://www.bing.com/.

  8. 8.

    See: http://yandex.ru/.

  9. 9.

    http://plg.uwaterloo.ca/~claclark/russir2015/Students.

  10. 10.

    See: https://sites.google.com/site/treccontext/.

  11. 11.

    bitbucket.org/poletaev/russir-2015/src.

  12. 12.

    See: http://romip.ru/russir2015/.

References

  1. Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: CARS (2010)

    Google Scholar 

  3. Ageev, M., Guo, Q., Lagun, D., Agichtein, E.: Find it if you can: a game for modeling different types of web search success using interaction data. In: SIGIR (2011)

    Google Scholar 

  4. Allan, J., Croft, B., Moffat, A., Sanderson, M.: Frontiers, challenges, and opportunities for information retrieval: report from SWIRL 2012 the second strategic workshop on information retrieval in Lorne. SIGIR Forum 46(1), 2–32 (2012)

    Article  Google Scholar 

  5. Alves, A.O., Pereira, F.C.: Making sense of location context. In: Proceedings of the 1st International Workshop on Context Discovery and Data Mining (ContextDD 2012), vol. 4, p. 7. ACM, New York (2012). http://dx.doi.org/10.1145/2346604.2346609

  6. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-oriented survey of context models. In: SIGMOD (2007)

    Google Scholar 

  7. Brown, P., Bovey, J., Chen, X.: Context-aware applications: from the laboratory to the marketplace. IEEE Pers. Commun. 4, 58–64 (1997)

    Article  Google Scholar 

  8. Cao, H., Hu, D.H., Shen, D., Jiang, D., Sun, J.-T., Chen, E., Yang, Q.: Context-aware query classification. In: SIGIR (2009)

    Google Scholar 

  9. Dean-Hall, A., Clarke, C.L., Kamps, J., Thomas, P., Voorhees, E.: Overview of the TREC 2014 contextual suggestion track. In: 23rd Text REtrieval Conference, Gaithersburg, Maryland (2015)

    Google Scholar 

  10. Dean-Hall, A., Clarke, C.L., Simone, N., Kamps, J., Thomas, P., Voorhees, E.: Overview of the TREC 2013 contextual suggestion track. In: 22nd Text REtrieval Conference, Gaithersburg, Maryland (2014)

    Google Scholar 

  11. Dean-Hall, A., Clarke, C.L.A.: Assessing contextual suggestion. In: 6th International Workshop on Evaluating Information Access, Tokyo, December 2014

    Google Scholar 

  12. Dean-Hall, A., Clarke, C.L.A.: The power of contextual suggestion. In: 37th European Conference on Information Retrieval, pp. 352–357, Vienna, March 2015

    Google Scholar 

  13. Dean-Hall, A., Clarke, C.L.A., Kamps, J., Thomas, P.: Evaluating contextual suggestion. In: 5th International Workshop on Evaluating Information Access, Tokyo, June 2013

    Google Scholar 

  14. Dean-Hall, A., Clarke, C.L.A., Kamps, J., Thomas, P., Voorhees, E.: Overview of the TREC 2012 contextual suggestion track. In: 21st Text REtrieval Conference, Gaithersburg, Maryland (2013)

    Google Scholar 

  15. Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of contextaware applications. Hum. Comput. Interact. 2, 97–166 (2001)

    Article  Google Scholar 

  16. Gama, J., Žliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46, 4:1–4:37, Article 44 (2014). http://dx.doi.org/10.1145/2523813

    Google Scholar 

  17. Hashemi, S.H., Clarke, C.L., Dean-Hall, A., Kamps, J., Kiseleva, J.: On the reusability of open test collections. In: 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, pp. 827–830, August 2015

    Google Scholar 

  18. Hassan, A., Shi, X., Craswell, N., Ramsey, B.: Beyond clicks: query reformulation as a predictor of search satisfaction. In: CIKM, pp. 2019–2028 (2013)

    Google Scholar 

  19. Hull, R., Neaves, P., Bedford-Roberts, J.: Toward situated computing. In: ISWC, pp. 146–153 (1997)

    Google Scholar 

  20. Kiseleva, J.: Context mining and integration into predictive web analytics. In: WWW (Companion Volume), pp. 383–388 (2013)

    Google Scholar 

  21. Kiseleva, J.: Using contextual information to understand searching and browsing behavior. In: Submission of SIGIR (Doctoral Consorcium) (2015)

    Google Scholar 

  22. Kiseleva, J., Crestan, E., Brigo, R., Dittel, R.: Modelling and detecting changes in user satisfaction. In: Proceeding of CIKM, pp. 1449–1458 (2014)

    Google Scholar 

  23. Kiseleva, J., García, A.M., Luo, Y., Kamps, J., Pechenizkiy, M., Bra, P.D.: Applying learning to rank techniques to contextual suggestions. In: Proceeding of Text REtrieval Conference (TREC) (2014)

    Google Scholar 

  24. Kiseleva, J., Kamps, J., Nikulin, V., Makarov, N.: Behavioral dynamics from the SERP’s perspective: what are failed SERPS and how to fix them? In: CIKM, pp. 1561–1570 (2015)

    Google Scholar 

  25. Kiseleva, J., Lam, H.T., Pechenizkiy, M., Calders, T.: Discovering temporal hidden contexts in web sessions for user trail prediction. In: Proceedings of WWW (Companion Volume), pp. 1067–1074. ACM (2013)

    Google Scholar 

  26. Kiseleva, J., Lam, H.T., Pechenizkiy, M., Calders, T.: Predicting current user intent with contextual markov models. In: ICDM Workshops (2013)

    Google Scholar 

  27. Lam, H.T., Kiseleva, J., Pechenizkiy, M., Calders, T.: Decomposing a sequence into independent subsequences using compression algorithms. In: Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytic, pp. 67–75 (2014)

    Google Scholar 

  28. Palmisano, C., Tuzhilin, A., Gorgoglione, M.: Using context to improve predictive modeling of customers in personalization applications. IEEE Trans. Knowl. Data Eng. (TKDE) 20(11), 1535–1549 (2008)

    Article  Google Scholar 

  29. Prahalad, C.: Beyond CRM: predicts customer context is the next big thing. In: AMA MwWorld (2004)

    Google Scholar 

  30. Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware recommendations with factorization machines. In: Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, pp. 635–644 (2011)

    Google Scholar 

  31. Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to context than location. Comput. Graph. 23(6), 893–901 (1999)

    Article  Google Scholar 

  32. Smucker, M.D., Clarke, C.L.: Time-based calibration of effectiveness measures. In: 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, Portland, Oregon, pp. 95–104 (2012)

    Google Scholar 

  33. Stern, D., Herbrich, R., Graepel, T.: Matchbox: large scale online bayesian recommendations. In: WWW, pp. 111–120 (2009)

    Google Scholar 

  34. Turney, P.: Exploiting context when learning to classify. CoRR (2002)

    Google Scholar 

  35. Turney, P.: The management of context-sensitive features: a review of strategies. CoRR (2002)

    Google Scholar 

  36. Want, R., Hopper, A., Falcão, V., Gibbons, J.: The active badge location system. ACM Trans. Inf. Syst. (TOIS) 10(1), 91–202 (1992)

    Article  Google Scholar 

  37. Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., Li, H.: Context-aware ranking in web search. In: SIGIR (2010)

    Google Scholar 

  38. Zliobaite, I.: Learning under concept drift: an overview. CoRR abs/1010.4784 (2010)

    Google Scholar 

  39. Žliobaitė, I.: Identifying hidden contexts in classification. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I. LNCS, vol. 6634, pp. 277–288. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  40. Zliobaite, I., Bakker, J., Pechenizkiy, M.: Beating the baseline prediction in food sales: how intelligent an intelligent predictor is? Expert Syst. Appl. (ESWA) 39(1), 806–815 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to RuSSIR to cover the travel expenses of the first author. We are thankful to the 30 students that actively participated in the hackathon—we were deeply impressed by the amount of work and creative ideas that were tried within 48 hours!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kiseleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kiseleva, J., Kamps, J., Clarke, C.L.A. (2016). Contextual Search and Exploration. In: Braslavski, P., et al. Information Retrieval. RuSSIR 2015. Communications in Computer and Information Science, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-41718-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41718-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41717-2

  • Online ISBN: 978-3-319-41718-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics