Abstract
This course provides an overview of various models for random graphs and their applications to the Web graph. We start with the classical Erdős-Rényi model, then proceed with the most recent models describing the topology and growth of the Internet, social networks, economic network, and biological networks, and finally present several applications of these models to the problems of search and crawling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The paper submitted to Internet Mathematics.
- 2.
Submitted to Izvestia Mathematics.
- 3.
Accepted to WAW.
References
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)
Barabási, A., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Phys. A: Stat. Mech. Appl. 281(1–4), 69–77 (2000)
Albert, R., Jeong, H., Barabási, A.L.: The diameter of the world wide web. Nature 401, 130–131 (1999)
Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 409–410 (1998)
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)
Erdős, P., Rényi, A.: On random graphs, I. Publ. Math. (Debr.) 6, 290–297 (1959)
Erdős, P., Rényi, A.: On the evolution of random graphs. In: Publication of the Mathematical Institute of the Hungarian Academy of Sciences, pp. 17–61 (1960)
Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)
Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24(1), 5–34 (2004)
Bollobás, B., Riordan, O.: Robustness and vulnerability of scale-free random graphs. Internet Math. 1(1), 1–35 (2003)
Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.E.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18(3), 279–290 (2001)
Ostroumova Prokhorenkova, L., Samosvat, E.: Global clustering coefficient in scale-free networks. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2014. LNCS, vol. 8882, pp. 47–58. Springer, Heidelberg (2014)
Bollobás, B.: Mathematical results on scale-free random graphs. In: Handbook of Graphs and Networks, Wiley, pp. 1–37 (2003)
Ryabchenko, A., Samosvat, E.: On the number of subgraphs of the Barabási-Albert random graph. Izv. Math. 76(3), 607–625 (2012)
Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633–4636 (2000)
Buckley, P.G., Osthus, D.: Popularity based random graph models leading to a scale-free degree sequence. Discret. Math. 282(13), 53–68 (2004)
Kupavskii, A., Ostroumova, L., Shabanov, D., Tetali, P.: The distribution of second degrees in the Buckley–Osthus random graph model. Internet Math. 9(4), 297–335 (2013)
Grechnikov, E.: An estimate for the number of edges between vertices of given degrees in random graphs in the bollobás-riordan model. Moscow J. Comb. Number Theory 1(2), 40–73 (2011)
Zhukovskiy, M., Vinogradov, D., Pritykin, Y., Ostroumova, L., Grechnikov, E., Gusev, G., Serdyukov, P., Raigorodskii, A.: Empirical validation of the Buckley-Osthus model for the web host graph: degree and edge distributions. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012, New York, NY, USA, pp. 1577–1581. ACM (2012)
Eggemann, N., Noble, S.: The clustering coefficient of a scale-free random graph. Discret. Appl. Math. 159(10), 953–965 (2011)
Avrachenkov, K., Lebedev, D.: PageRank of scale-free growing networks. Internet Math. 3(2), 207–231 (2007)
Bogolubsky, L., Dvurechensky, P., Gasnikov, A., Gusev, G., Nesterov, Y., Raigorodskii, A., Tikhonov, A., Zhukovskii, M.: Learning supervised PageRank with gradient-free optimization methods, p. 11, November 2014
Ostroumova, L., Ryabchenko, A., Samosvat, E.: Generalized preferential attachment: tunable power-law degree distribution and clustering coefficient. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 185–202. Springer, Heidelberg (2013)
Krot, A., Prokhorenkova, L.O.: Local clustering coefficient in generalized preferential attachment models, July 2015
Ostroumova, L., Samosvat, E.: Recency-based preferential attachment models, June 2014
Bollobás, B., Borgs, C., Chayes, J., Riordan, O.: Directed scale-free graphs. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, Philadelphia, PA, USA, pp. 132–139. Society for Industrial and Applied Mathematics (2003)
Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 57–65 (2000)
Goyal, S.: Connections: An Introduction to the Economics of Networks. Princeton University Press, Princeton (2007)
Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
Newman, M., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton University Press, Princeton (2006)
Dorogovtsev, S.: Lectures on Complex Networks. Oxford University Press Inc., New York (2010)
Durrett, R.: Random Graph Dynamics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York (2006)
Acknowledgments
The author was supported by Russian Foundation for Basic Research, grant no. 15-01-00350, and by grant NSH-2964.2014.1 for support of leading scientific schools.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Raigorodskii, A. (2016). Models of Random Graphs and Their Applications to the Web-Graph Analysis. In: Braslavski, P., et al. Information Retrieval. RuSSIR 2015. Communications in Computer and Information Science, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-41718-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-41718-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41717-2
Online ISBN: 978-3-319-41718-9
eBook Packages: Computer ScienceComputer Science (R0)