Skip to main content

Towards Evaluating the Impact of Anaphora Resolution on Text Summarisation from a Human Perspective

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2016)

Abstract

Automatic Text Summarisation (TS) is the process of abstracting key content from information sources. Previous research attempted to combine diverse NLP techniques to improve the quality of the produced summaries. The study reported in this paper seeks to establish whether Anaphora Resolution (AR) can improve the quality of generated summaries, and to assess whether AR has the same impact on text from different subject domains. Summarisation evaluation is critical to the development of automatic summarisation systems. Previous studies have evaluated their summaries using automatic techniques. However, automatic techniques lack the ability to evaluate certain factors which are better quantified by human beings. In this paper the summaries are evaluated via human judgment, where the following factors are taken into consideration: informativeness, readability and understandability, conciseness, and the overall quality of the summary. Overall, the results of this study depict a pattern of slight but not significant increases in the quality of summaries produced using AR. At a subject domain level, however, the results demonstrate that the contribution of AR towards TS is domain dependent and for some domains it has a statistically significant impact on TS.

M.R. Ghorab—Postdoctoral Researcher at Trinity College Dublin at the time of conducting this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In our experiment, the first summary is marked as TR and the second summary is marked as TR + AR.

References

  1. Bayomi, M., Levacher, K., Ghorab, M.R., Lawless, S.: OntoSeg: a novel approach to text segmentation using ontological similarity. In: Proceedings of 5th ICDM Workshop on Sentiment Elicitation from Natural Text for Information Retrieval and Extraction, ICDM SENTIRE. Held in Conjunction with the IEEE International Conference on Data Mining, ICDM 2015, Atlantic City, NJ, USA, 14 November 2015

    Google Scholar 

  2. Lawless, S., Lavin, P., Bayomi, M., Cabral, J.P., Ghorab, M.: Text summarization and speech synthesis for the automated generation of personalized audio presentations. In: Biemann, C., Handschuh, S., Freitas, A., Meziane, F., Métais, E. (eds.) NLDB 2015. LNCS, vol. 9103, pp. 307–320. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  3. Cruz, F., Troyano, J.A., Enríquez, F.: Supervised TextRank. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006. LNCS (LNAI), vol. 4139, pp. 632–639. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Mihalcea, R., Tarau, P.: TextRank: bringing order into texts. In: Proceedings of EMNLP 2004, pp. 404–411. Association for Computational Linguistics, Barcelona, Spain (2004)

    Google Scholar 

  5. Vodolazova, T., Lloret, E., Muñoz, R., Palomar, M.: A comparative study of the impact of statistical and semantic features in the framework of extractive text summarization. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2012. LNCS, vol. 7499, pp. 306–313. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Mitkov, R., Evans, R., Orăsan, C., Dornescu, I., Rios, M.: Coreference resolution: to what extent does it help NLP applications? In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2012. LNCS, vol. 7499, pp. 16–27. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Ježek, K., Poesio, M., Kabadjov, M.A., Steinberger, J.: Two uses of anaphora resolution in summarization. Inf. Process. Manag. 43(6), 1663–1680 (2007)

    Article  Google Scholar 

  8. Steinberger, J., Ježek, K.: Evaluation measures for text summarization. Comput. Inform. 28(2), 251–275 (2012)

    Google Scholar 

  9. Lin, C., Rey, M.: ROUGE : a package for automatic evaluation of summaries. In: Text Summarization Branches Out: Proceedings of ACL-2004 Workshop, vol. 8 (2004)

    Google Scholar 

  10. Murray, G., Renals, S., Carletta, J.: Extractive summarization of meeting recordings. In: Proceedings of Interspeech 2005 - Eurospeech, 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, 4–8 September 2005

    Google Scholar 

  11. Fiszman, M., Rindflesch, T.C.: Abstraction Summarization for Managing the Biomedical Research Literature (2003)

    Google Scholar 

  12. Vodolazova, T., Lloret, E., Muñoz, R., Palomar, M.: Extractive text summarization: can we use the same techniques for any text? In: Métais, E., Meziane, F., Saraee, M., Sugumaran, V., Vadera, S. (eds.) NLDB 2013. LNCS, vol. 7934, pp. 164–175. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Nenkova, A., Mckeown, K.R.: Automatic summarization. In: Proceedings of 49th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts of ACL 2011. Association for Computational Linguistics (2011)

    Google Scholar 

  14. Edmundson, H.P.: New methods in automatic extracting. J. ACM (JACM) 16(2), 264–285 (1969)

    Article  MATH  Google Scholar 

  15. Teufel, S., Moens, M.: Sentence extraction as a classification task. In: Proceedings of ACL, vol. 97 (1997)

    Google Scholar 

  16. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2), 159–165 (1958)

    Article  MathSciNet  Google Scholar 

  17. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Stanford InfoLab (1999)

    Google Scholar 

  18. Nenkova, A., Chae, J., Louis, A., Pitler, E.: Structural features for predicting the linguistic quality of text. In: Krahmer, E., Theune, M. (eds.) Empirical Methods. LNCS, vol. 5790, pp. 222–241. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Sparck Jones, K., Galliers, J.R., Walter, S.M.: Evaluating Natural Language Processing Systems: An Analysis and Review. LNCS, vol. 1083. Springer, Heidelberg (1996)

    Google Scholar 

  20. Saggion, H., Lapalme, G.: Concept identification and presentation in the context of technical text summarization. In: Proceedings of 2000 NAACL-ANLP Workshop on Automatic Summarization, pp. 1–10. Association for Computational Linguistics, Stroudsburg, PA, USA (2000)

    Google Scholar 

  21. Augat, M., Ladlow, M.: An NLTK package for lexical-chain based word sense disambiguation (2009)

    Google Scholar 

  22. Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., Jurafsky, D.: Stanford’s multi-pass sieve coreference resolution system at the CoNLL-2011 shared task. In: Proceedings of 15th Conference on Computational Natural Language Learning: Shared Task, pp. 28–34. Association for Computational Linguistics, Stroudsburg, PA, USA (2011)

    Google Scholar 

Download references

Acknowledgements

This research is supported by Science Foundation Ireland through the CNGL Programme (Grant 12/CE/I2267) in the ADAPT Centre (www.adaptcentre.ie) at Trinity College Dublin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Bayomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bayomi, M., Levacher, K., Ghorab, M.R., Lavin, P., O’Connor, A., Lawless, S. (2016). Towards Evaluating the Impact of Anaphora Resolution on Text Summarisation from a Human Perspective. In: Métais, E., Meziane, F., Saraee, M., Sugumaran, V., Vadera, S. (eds) Natural Language Processing and Information Systems. NLDB 2016. Lecture Notes in Computer Science(), vol 9612. Springer, Cham. https://doi.org/10.1007/978-3-319-41754-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41754-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41753-0

  • Online ISBN: 978-3-319-41754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics