Abstract
Pain detection using facial images is of critical importance in many Health applications. Since pain is a spatiotemporal process, recent works on this topic employ facial spatiotemporal features to detect pain. These systems extract such features from the entire area of the face. In this paper, we show that by employing super-pixels we can divide the face into three regions, in a way that only one of these regions (about one third of the face) contributes to the pain estimation and the other two regions can be discarded. The experimental results on the UNBC-McMaster database show that the proposed system using this single region outperforms state-of-the-art systems in detecting no-pain scenarios, while it reaches comparable results in detecting weak and severe pain scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Ashraf, A.B., Lucey, S., Cohn, J.F., Chen, T., Ambadar, Z., Prkachin, K.M., Solomon, P.E.: The painful face âĂŞ pain expression recognition using active appearance models. Image Vis. Comput. 27(12), 1788–1796 (2009). visual and multimodal analysis of human spontaneous behaviour
Brahnam, S., Chuang, C.F., Shih, F.Y., Slack, M.R.: Machine recognition and representation of neonatal facial displays of acute pain. Artif. Intell. Med. 36(3), 211–222 (2006)
Chen, Z., Ansari, R., Wilkie, D.J.: Automated detection of pain from facial expressions: a rule-based approach using aam. In: SPIE Medical Imaging, p. 83143O. International Society for Optics and Photonics (2012)
Derpanis, K., Gryn, J.: Three-dimensional nth derivative of gaussian separable steerable filters. In: IEEE International Conference on Image Processing, 2005, ICIP 2005, vol. 3, pp. III-553–III-556, September 2005
Gholami, B., Haddad, W.M., Tannenbaum, A.R.: Agitation and pain assessment using digital imaging. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009, EMBC 2009, pp. 2176–2179. IEEE (2009)
Hammal, Z., Cohn, J.F.: Automatic detection of pain intensity. In: Proceedings of the 14th ACM International Conference on Multimodal Interaction. pp. 47–52. ACM (2012)
Irani, R., Nasrollahi, K., Moeslund, T.B.: Pain recognition using spatiotemporal oriented energy of facial muscles. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshop, pp. 679–692 (2015)
Irani, R., Nasrollahi, K., Simon, M.O., Corneanu, C.A., Escalera, S., Bahnsen, C., Lundtoft, D.H., Moeslund, T.B., Pedersen, T.L., Klitgaard, M.L., et al.: Spatiotemporal analysis of RGB-DT facial images for multimodal pain level recognition (2015)
Kaltwang, S., Rudovic, O., Pantic, M.: Continuous pain intensity estimation from facial expressions. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 368–377. Springer, Heidelberg (2012)
Littlewort, G.C., Bartlett, M.S., Lee, K.: Automatic coding of facial expressions displayed during posed and genuine pain. Image Vis. Comput. 27(12), 1797–1803 (2009)
Lucey, P., Cohn, J.F., Prkachin, K.M., Solomon, P.E., Chew, S., Matthews, I.: The UNBC-McMaster Shoulder Pain Expression Archive Database (2011). link to UNBC-MacMaster Shoulder Pain Database
Lucey, P., Cohn, J.F., Prkachin, K.M., Solomon, P.E., Chew, S., Matthews, I.: Painful monitoring: automatic pain monitoring using the unbc-mcmaster shoulder pain expression archive database. Image Vis. Comput. 30(3), 197–205 (2012)
Monwar, M., Rezaei, S.: Appearance-based pain recognition from video sequences. In: International Joint Conference on Neural Networks, 2006, IJCNN 2006, pp. 2429–2434 (2006)
Sikka, K., Dhall, A., Bartlett, M.: Weakly supervised pain localization using multiple instance learning. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–8. IEEE (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Lundtoft, D.H., Nasrollahi, K., Moeslund, T.B., Escalera, S. (2016). Spatiotemporal Facial Super-Pixels for Pain Detection. In: Perales, F., Kittler, J. (eds) Articulated Motion and Deformable Objects. AMDO 2016. Lecture Notes in Computer Science(), vol 9756. Springer, Cham. https://doi.org/10.1007/978-3-319-41778-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-41778-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41777-6
Online ISBN: 978-3-319-41778-3
eBook Packages: Computer ScienceComputer Science (R0)