Abstract
We introduce a fully automatic localization and segmentation pipeline for three-dimensional (3D) intervertebral discs (IVDs), consisting of a regression-based prediction of vertebral bodies and IVD positions as well as a 3D geodesic active contour segmentation delineating the IVDs. The approach was evaluated on the data set of the challenge in conjunction with the 3rd MICCAI Workshop & Challenge on Computational Methods and Clinical Applications for Spine Imaging - MICCAI–CSI2015, that consists of 15 magnetic resonance images of the lumbar spine with given ground truth segmentations. Based on a localization accuracy of \(3.9 \pm 1.6\) mm, we achieve segmentation results in terms of the Dice similarity coefficient of \(89.1 \pm 2.9\,\%\) averaged over the whole data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Downloaded from http://www.cs.ubc.ca/~schmidtm/Software/UGM.html.
References
Neubert, A., Fripp, J., Engstrom, C., Walker, D., Weber, M., Schwarz, R., Crozier, S.: Three-dimensional morphological and signal intensity features for detection of intervertebral disc degeneration from magnetic resonance images. J. Am. Med. Inform. Assoc. 20(6), 1082–1090 (2013)
Štern, D., Likar, B., Pernuš, F., Vrtovec, T.: Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine. Phys. Med. Biol. 55(1), 247–264 (2010)
Chen, C., Belavy, D., Yu, W., Chu, C., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.: Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans. Med. Imaging 34(8), 1719–1729 (2015)
Law, M., Tay, K., Leung, A., Garvin, G., Li, S.: Intervertebral disc segmentation in MR images using anisotropic oriented flux. Med. Image Anal. 17(1), 43–61 (2013)
Korez, R., Likar, B., Pernuš, F., Vrtovec, T.: Parametric modeling of the intervertebral disc space in 3D: application to CT images of the lumbar spine. Comput. Med. Imaging Graph. 38(7), 596–605 (2014)
Criminisi, A., Robertson, D., Konukoglu, E., Shotton, J., Pathak, S., White, S., Siddiqui, K.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Med. Image Anal. 17(8), 1293–1303 (2013)
Ebner, T., Stern, D., Donner, R., Bischof, H., Urschler, M.: Towards automatic bone age estimation from MRI: localization of 3D anatomical landmarks. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 421–428. Springer, Heidelberg (2014)
Donner, R., Menze, B., Bischof, H., Langs, G.: Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization. Med. Image Anal. 17(8), 1304–1314 (2013)
Ma, W., Morel, J.M., Osher, S., Chien, A.: An L1-based variational model for Retinex theory and its application to medical images. In: Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition - CVPR 2011, pp. 153–160. IEEE (2011)
Nyúl, L., Udupa, J., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)
Gall, J., Yao, A., Razavi, N., van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2188–2201 (2011)
Reinbacher, C., Pock, T., Bauer, C., Bischof, H.: Variational segmentation of elongated volumetric structures. In: Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition - CVPR 2010, pp. 3177–3184. IEEE (2010)
Hammernik, K., Ebner, T., Stern, D., Urschler, M., Pock, T.: Vertebrae segmentation in 3D CT images based on a variational framework. In: Yao, J., et al. (eds.) CSI 2014. LNCVB, vol. 20, pp. 227–233. Springer, Switzerland (2015)
Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
Veksler, O.: Star shape prior for graph-cut image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467. Springer, Heidelberg (2008)
Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition - CVPR 2010, pp. 3129–3136. IEEE (2010)
Hammernik, K.: Convex framework for 2D & 3D image segmentation using shape constraints. Master’s thesis, Graz University of Technology, Austria (2015)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
Acknowledgements
This work was supported by the province of Styria under the funding scheme “HTI:Tech_for_Med” (ABT08-22-T-7/2013-13) and by the Austrian Science Fund (FWF): P28078-N33.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Urschler, M., Hammernik, K., Ebner, T., Štern, D. (2016). Automatic Intervertebral Disc Localization and Segmentation in 3D MR Images Based on Regression Forests and Active Contours. In: Vrtovec, T., et al. Computational Methods and Clinical Applications for Spine Imaging. CSI 2015. Lecture Notes in Computer Science(), vol 9402. Springer, Cham. https://doi.org/10.1007/978-3-319-41827-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-41827-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41826-1
Online ISBN: 978-3-319-41827-8
eBook Packages: Computer ScienceComputer Science (R0)