Skip to main content

Semantic Aware Bayesian Network Model for Actionable Knowledge Discovery in Linked Data

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9729))

  • 3126 Accesses

Abstract

The majority of the conventional mining algorithms treat the mining process as an isolated data-driven procedure and overlook the semantic of the targeted data. As a result, the generated patterns are abundant and end users cannot act upon them seamlessly. Furthermore, interdisciplinary knowledge can not be obtained from domain-specific silo of data.

The emergence of Linked Data (LD) as a new model for knowledge representation, which intertwines data with its semantics, has introduced new opportunities for data miners. Accordingly, this paper proposes an ontology-based Semantic-Aware Bayesian network (BN) model.

In contraxt to the exisiting mining algorithms, the proposed model does nto transorm the original format of the LD set. Therefore, it not only accomodates the sematnic aspects in LD, but also caters to the need of connectign different data-sets from different domains. We evaluate the proposed model on a Bone Dysplasia dataset, Experimental results show promising perfomance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 37–54 (1996)

    Google Scholar 

  2. Zhang, C., Zhang, S.: Association Rule Mining: Models and Algorithms. Springer-Verlag Berlin Heidelberg. XII, p. 244 (2002)

    Google Scholar 

  3. Cao, L., Yu, P.S., Zhang, C., Zhao, Y.: Domain driven data mining. Springer US. XVI, p. 248 (2010)

    Google Scholar 

  4. Cao, L.: Domain-driven data mining: Challenges and prospects. IEEE Trans. Knowl. Data Eng. 22, 755–769 (2010)

    Article  Google Scholar 

  5. Sexton, M., Lu, S.: The challenges of creating actionable knowledge: an action research perspective. Constr. Manag. Econ. 2, 683–694 (2009)

    Article  Google Scholar 

  6. Paul, R., Groza, T., Hunter, J., Zankl, A.: Semantic interestingness measures for discovering association rules in the skeletal dysplasia domain. J. Biomed. Semantics. 5, 8 (2014)

    Article  Google Scholar 

  7. Dahan, H., Cohen, S., Rokach, L., Maimon, O.: Proactive Data Mining with Decision Trees. Springer New York (2014)

    Google Scholar 

  8. Antunes, C., Silva, A.: New trends in knowledge driven data mining a position paper. In: Proc. 16th Int. Conf. Enterp. Inf. Syst., pp. 346–351 (2014)

    Google Scholar 

  9. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semant. Web Inf. Syst. 5, 1–22 (2009)

    Google Scholar 

  10. Quboa, Q.K., Saraee, M.: A State-of-the-Art Survey on Semantic Web Mining. Intell. Inf. Manag. 05, 10–17 (2013)

    Google Scholar 

  11. Ding, Z., Peng, Y., Pan, R.: BayesOWL: Uncertainty Modelling in Semantic Web Ontologies. Soft Comput. Ontol. Semant. Web. 204, 3–29 (2006)

    Article  Google Scholar 

  12. Ma, Z.: Soft Computing in Ontologies and Semantic Web. Springer Sci. Bus. Media (2007)

    Google Scholar 

  13. Sun, Y.: A Prototype Implementation of BayesOWL. University of Mayryland Baltimore County, Diss (2009)

    Google Scholar 

  14. Ding, Z.: BayesOWL. http://www.csee.umbc.edu/~ypeng/BayesOWL/index.html

  15. Ding, Z., Peng, Y.: A Bayesian approach to uncertainty modelling in OWL ontology. Maryland Univ Baltimore Dept. of Computer Science and Electrical Engineering (2006). http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA444453

  16. Zhang, S., Sun, Y., Peng, Y., Wang, X.: A practical tool for uncertainty in OWL ontologies. In: Proc. 10th IASTED Int. Conf., vol. 674, pp. 235

    Google Scholar 

  17. Koller, D., Friedman, N.: Probabilistic Graphical Models Principles and Techniques. MIT press (2009)

    Google Scholar 

  18. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer Science & Business Media (2009)

    Google Scholar 

  19. Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D., Williamson, D.M.: Learning in models with fixed structure. In: Bayesian Networks Educ. Assessment, pp. 279–330. Springer New York (2015)

    Google Scholar 

  20. Heinrich, G.: Parameter estimation for text analysis. Tech. Report, Fraunhofer IGD, Darmstadt, Ger. (2005)

    Google Scholar 

  21. Levy, R.: Probabilistic Models in the Study of Language. University of California, San Diego (2012)

    Google Scholar 

  22. Fienberg, S.E.: An iterative procedure for estimation in contingency tables. Ann. Math. Statisitics, 907–917 (1970)

    Google Scholar 

  23. Cramer, E.: Probability measures with given marginals and conditionals: I-projections and conditional iterative proportional fitting. Stat. Decis. J. Stoch. Methods Model. PhD Thesis, Czech Tech. Univ. Fac. Electr. Eng., 311–330 (2000)

    Google Scholar 

  24. Vomlel, J.: Methods of probabilistic knowledge integration. PhD Thesis, Czech Technical University, Faculty Of Electrical Engineering (1999)

    Google Scholar 

  25. Groza, T., Hunter, J., Zankl, A.: The Bone Dysplasia Ontology: integrating genotype and phenotype information in the skeletal dysplasia domain. BMC Bioinformatics 13, 50 (2012)

    Article  Google Scholar 

  26. Warman, M.L., Cormier-Daire, V., Hall, C., Krakow, D., Lachman, R., Lemerrer, M., Mortier, G., Mundlos, S., Nishimura, G., Rimoin, D.L., Robertson, S., Savarirayan, R., Sillence, D., Spranger, J., Unger, S., Zabel, B., Superti-Furga, A.: Nosology and classification of genetic skeletal disorders: 2010 revision. Am. J. Med. Genet. Part A 155, 943–968 (2011)

    Article  Google Scholar 

  27. Paul, R., Groza, T., Hunter, J., Zankl, A.: Decision Support Methods for Finding Phenotype - Disorder Associations in the Bone Dysplasia Domain. PLoS One 7 (2012)

    Google Scholar 

  28. Liboi, E., Lievens, P.M.J.: Thanatophoric Dysplasia. Dostupné z (2004). http://www.orpha.net/data/patho/GB/uk-Thanatophoric-dysplasia.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasanein Alharbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alharbi, H., Saraee, M. (2016). Semantic Aware Bayesian Network Model for Actionable Knowledge Discovery in Linked Data. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2016. Lecture Notes in Computer Science(), vol 9729. Springer, Cham. https://doi.org/10.1007/978-3-319-41920-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41920-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41919-0

  • Online ISBN: 978-3-319-41920-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics