Abstract
The majority of the conventional mining algorithms treat the mining process as an isolated data-driven procedure and overlook the semantic of the targeted data. As a result, the generated patterns are abundant and end users cannot act upon them seamlessly. Furthermore, interdisciplinary knowledge can not be obtained from domain-specific silo of data.
The emergence of Linked Data (LD) as a new model for knowledge representation, which intertwines data with its semantics, has introduced new opportunities for data miners. Accordingly, this paper proposes an ontology-based Semantic-Aware Bayesian network (BN) model.
In contraxt to the exisiting mining algorithms, the proposed model does nto transorm the original format of the LD set. Therefore, it not only accomodates the sematnic aspects in LD, but also caters to the need of connectign different data-sets from different domains. We evaluate the proposed model on a Bone Dysplasia dataset, Experimental results show promising perfomance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 37–54 (1996)
Zhang, C., Zhang, S.: Association Rule Mining: Models and Algorithms. Springer-Verlag Berlin Heidelberg. XII, p. 244 (2002)
Cao, L., Yu, P.S., Zhang, C., Zhao, Y.: Domain driven data mining. Springer US. XVI, p. 248 (2010)
Cao, L.: Domain-driven data mining: Challenges and prospects. IEEE Trans. Knowl. Data Eng. 22, 755–769 (2010)
Sexton, M., Lu, S.: The challenges of creating actionable knowledge: an action research perspective. Constr. Manag. Econ. 2, 683–694 (2009)
Paul, R., Groza, T., Hunter, J., Zankl, A.: Semantic interestingness measures for discovering association rules in the skeletal dysplasia domain. J. Biomed. Semantics. 5, 8 (2014)
Dahan, H., Cohen, S., Rokach, L., Maimon, O.: Proactive Data Mining with Decision Trees. Springer New York (2014)
Antunes, C., Silva, A.: New trends in knowledge driven data mining a position paper. In: Proc. 16th Int. Conf. Enterp. Inf. Syst., pp. 346–351 (2014)
Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semant. Web Inf. Syst. 5, 1–22 (2009)
Quboa, Q.K., Saraee, M.: A State-of-the-Art Survey on Semantic Web Mining. Intell. Inf. Manag. 05, 10–17 (2013)
Ding, Z., Peng, Y., Pan, R.: BayesOWL: Uncertainty Modelling in Semantic Web Ontologies. Soft Comput. Ontol. Semant. Web. 204, 3–29 (2006)
Ma, Z.: Soft Computing in Ontologies and Semantic Web. Springer Sci. Bus. Media (2007)
Sun, Y.: A Prototype Implementation of BayesOWL. University of Mayryland Baltimore County, Diss (2009)
Ding, Z.: BayesOWL. http://www.csee.umbc.edu/~ypeng/BayesOWL/index.html
Ding, Z., Peng, Y.: A Bayesian approach to uncertainty modelling in OWL ontology. Maryland Univ Baltimore Dept. of Computer Science and Electrical Engineering (2006). http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA444453
Zhang, S., Sun, Y., Peng, Y., Wang, X.: A practical tool for uncertainty in OWL ontologies. In: Proc. 10th IASTED Int. Conf., vol. 674, pp. 235
Koller, D., Friedman, N.: Probabilistic Graphical Models Principles and Techniques. MIT press (2009)
Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer Science & Business Media (2009)
Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D., Williamson, D.M.: Learning in models with fixed structure. In: Bayesian Networks Educ. Assessment, pp. 279–330. Springer New York (2015)
Heinrich, G.: Parameter estimation for text analysis. Tech. Report, Fraunhofer IGD, Darmstadt, Ger. (2005)
Levy, R.: Probabilistic Models in the Study of Language. University of California, San Diego (2012)
Fienberg, S.E.: An iterative procedure for estimation in contingency tables. Ann. Math. Statisitics, 907–917 (1970)
Cramer, E.: Probability measures with given marginals and conditionals: I-projections and conditional iterative proportional fitting. Stat. Decis. J. Stoch. Methods Model. PhD Thesis, Czech Tech. Univ. Fac. Electr. Eng., 311–330 (2000)
Vomlel, J.: Methods of probabilistic knowledge integration. PhD Thesis, Czech Technical University, Faculty Of Electrical Engineering (1999)
Groza, T., Hunter, J., Zankl, A.: The Bone Dysplasia Ontology: integrating genotype and phenotype information in the skeletal dysplasia domain. BMC Bioinformatics 13, 50 (2012)
Warman, M.L., Cormier-Daire, V., Hall, C., Krakow, D., Lachman, R., Lemerrer, M., Mortier, G., Mundlos, S., Nishimura, G., Rimoin, D.L., Robertson, S., Savarirayan, R., Sillence, D., Spranger, J., Unger, S., Zabel, B., Superti-Furga, A.: Nosology and classification of genetic skeletal disorders: 2010 revision. Am. J. Med. Genet. Part A 155, 943–968 (2011)
Paul, R., Groza, T., Hunter, J., Zankl, A.: Decision Support Methods for Finding Phenotype - Disorder Associations in the Bone Dysplasia Domain. PLoS One 7 (2012)
Liboi, E., Lievens, P.M.J.: Thanatophoric Dysplasia. Dostupné z (2004). http://www.orpha.net/data/patho/GB/uk-Thanatophoric-dysplasia.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Alharbi, H., Saraee, M. (2016). Semantic Aware Bayesian Network Model for Actionable Knowledge Discovery in Linked Data. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2016. Lecture Notes in Computer Science(), vol 9729. Springer, Cham. https://doi.org/10.1007/978-3-319-41920-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-41920-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41919-0
Online ISBN: 978-3-319-41920-6
eBook Packages: Computer ScienceComputer Science (R0)