Skip to main content

Multiple Consensuses Clustering by Iterative Merging/Splitting of Clustering Patterns

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9729))

  • 3021 Accesses

Abstract

The existence of many clustering algorithms with variable performance on each dataset made the clustering task difficult. Consensus clustering tries to solve this problem by combining the partitions generated by different algorithms to build a new solution that is more stable and achieves better results. In this work, we propose a new consensus method that, unlike others, give more insight on the relations between the different partitions in the clusterings ensemble, by using the frequent closed itemsets technique, usually used for association rules discovery. Instead of generating one consensus, our method generates multiple consensuses based on varying the number of base clusterings, and links these solutions in a hierarchical representation that eases the selection of the best clustering. This hierarchical view also provides an analysis tool, for example to discover strong clusters or outlier instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asur, S., Ucar, D., Parthasarathy, S.: An ensemble framework for clustering protein-protein interaction networks. Bioinformatics 23(13), i29–i40 (2007)

    Article  Google Scholar 

  2. Ceglar, A., Roddick, J.F.: Association mining. ACM Computing Surveys 38(2) (2006)

    Google Scholar 

  3. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Systems 1695 (2006). http://igraph.org

  4. Dalton, L., Ballarin, V., Brun, M.: Clustering algorithms: on learning, validation, performance, and applications to genomics. Current Genomics 10(6), 430 (2009)

    Article  Google Scholar 

  5. Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9), 1090–1099 (2003)

    Article  Google Scholar 

  6. Färber, I., Günnemann, S., Kriegel, H.P., Kröger, P., Müller, E., Schubert, E., Seidl, T., Zimek, A.: On using class-labels in evaluation of clusterings. In: KDD MultiClust International Workshop on Discovering, Summarizing and Using Multiple Clusterings, p. 1 (2010)

    Google Scholar 

  7. Fern, X.Z., Brodley, C.E.: Solving cluster ensemble problems by bipartite graph partitioning. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 36. ACM (2004)

    Google Scholar 

  8. Fischer, B., Buhmann, J.M.: Bagging for path-based clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(11), 1411–1415 (2003)

    Article  Google Scholar 

  9. Fred, A.L., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 835–850 (2005)

    Article  Google Scholar 

  10. Ghaemi, R., Sulaiman, M.N., Ibrahim, H., Mustapha, N.: A survey: Clustering ensembles techniques. WASET 50, 636–645 (2009)

    Google Scholar 

  11. Hahsler, M., Gruen, B., Hornik, K.: arules – A computational environment for mining association rules and frequent item sets. Journal of Statistical Software 14(15), 1–25 (2005)

    Article  Google Scholar 

  12. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Journal of Intelligent Information Systems 17(2), 107–145 (2001)

    Article  MATH  Google Scholar 

  13. Hornik, K.: A CLUE for CLUster Ensembles. Journal of Statistical Software 14(12) (2005)

    Google Scholar 

  14. Jaccard, P.: The distribution of the flora in the alpine zone.1. New Phytologist 11(2), 37–50 (1912). http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x

    Article  Google Scholar 

  15. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  16. Mondal, K.C., Pasquier, N., Mukhopadhyay, A., Maulik, U., Bandhopadyay, S.: A new approach for association rule mining and bi-clustering using formal concept analysis. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 86–101. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Inf. Systems 24(1), 25–46 (1999)

    Article  MATH  Google Scholar 

  18. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2015). https://www.R-project.org/

  19. Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.: Internal versus external cluster validation indexes. International Journal of Computers and Communications 5(1), 27–34 (2011)

    Google Scholar 

  20. Sarumathi, S., Shanthi, N., Sharmila, M.: A comparative analysis of different categorical data clustering ensemble methods in data mining. IJCA 81(4), 46–55 (2013)

    Article  Google Scholar 

  21. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. JMLR 3, 583–617 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: Models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12), 1866–1881 (2005)

    Article  Google Scholar 

  23. Ultsch, A.: Clustering with SOM: U*C. In: Proc. WSOM Workshop, pp. 75–82 (2005)

    Google Scholar 

  24. Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. IJPRAI 25(03), 337–372 (2011)

    MathSciNet  Google Scholar 

  25. Wu, O., Hu, W., Maybank, S.J., Zhu, M., Li, B.: Efficient clustering aggregation based on data fragments. IEEE Trans. Syst. Man Cybern. B Cybern. 42(3), 913–926 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atheer Al-najdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Al-najdi, A., Pasquier, N., Precioso, F. (2016). Multiple Consensuses Clustering by Iterative Merging/Splitting of Clustering Patterns. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2016. Lecture Notes in Computer Science(), vol 9729. Springer, Cham. https://doi.org/10.1007/978-3-319-41920-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41920-6_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41919-0

  • Online ISBN: 978-3-319-41920-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics