Abstract
In bibliometrics, there are two main procedures to explore a research field: performance analysis and science mapping. Performance analysis aims at evaluating groups of scientific actors (countries, universities, departments, researchers) and the impact of their activity on the basis of bibliographic data. Science mapping aims at displaying the structural and dynamic aspects of scientific research, delimiting a research field, and quantifying and visualizing the detected sub-fields by means of co-word analysis or documents co-citation analysis. In this paper we present two bibliometric tools that we have developed in our research laboratory SECABA: (i) H-Classics to develop performance analysis based on Highly Cited Papers and (ii) SciMAT to develop science mapping guided by performance bibliometric indicators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alonso, S., Cabrerizo, F.J., Herrera-Viedma, E., Herrera, F.: H-index: a review focused in its variants, computation and standardization for different scientific fields. J. Inf. 3(4), 273–289 (2009)
Bar-Ilan, J.: Citations to the “introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics 82(3), 495–506 (2010)
Börner, K., Chen, C., Boyack, K.W.: Visualizing knowledge domains. Ann. Rev. Inf. Sci. Technol. 37, 179–255 (2003)
Burrell, Q.L.: On the h-index, the size of the Hirsch core and Jin’s A-index. J. Inf. 1(2), 170–177 (2007)
Cahlik, T.: Comparison of the maps of science. Scientometrics 49(3), 373–387 (2000)
Callon, M., Courtial, J.P., Turner, W.A., Bauin, S.: From translations to problematic networks: an introduction to co-word analysis. Soc. Sci. Inf. 22(2), 191–235 (1983)
Callon, M., Courtial, J.P., Laville, F.: Co-word analysis as a tool for describing the network of interactions between basic and technological research - the case of polymer chemistry. Scientometrics 22(1), 155–205 (1991)
Cartes-Velásquez, R., Manterola-Delgado, C.: Bibliometric analysis of articles published in ISI dental journals, 2007–2011. Scientometrics 98(3), 2223–2233 (2014)
Cobo, M.J., Chiclana, F., Collop, A., de Oña, J., Herrera-Viedma, E.: A bibliometric analysis of the intelligent transportation systems research based on science mapping. IEEE Trans. Intell. Transp. Syst. 11(2), 901–908 (2014)
Cobo, M.J., López-Herrera, A.G., Herrera, F., Herrera-Viedma, E.: A note on the ITS topic evolution in the period 2000–2009 at T-ITS. IEEE Trans. Intell. Transp. Syst. 13(1), 413–420 (2012)
Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., Herrera, F.: An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J. Inf. 5(1), 146–166 (2011)
Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., Herrera, F.: Science mapping software tools: review, analysis and cooperative study among tools. J. Am. Soc. Inform. Sci. Technol. 62(7), 1382–1402 (2011)
Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., Herrera, F.: Scimat: a new science mapping analysis software tool. J. Am. Soc. Inform. Sci. Technol. 63(8), 1609–1630 (2012)
Cobo, M.J., Mártinez, M.A., Gutiérrez-Salcedo, M., Fujita, E., Herrera-Viedma, H.: 25 years at knowledge-based systems: a bibliometric analysis. Knowl.-Based Syst. 80, 3–13 (2015)
Cook, D.J., Holder, L.B.: Mining Graph Data. Wiley-Interscience, Hoboken (2006)
Coulter, N., Monarch, I., Konda, S.: Software engineering as seen through its research literature: a study in co-word analysis. J. Am. Soc. Inform. Sci. Technol. 49(13), 1206–1223 (1998)
Falagas, M.E., Pitsouni, E.I., Malietzis, G.A., Pappas, G.: Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J. 22(2), 338–342 (2008)
Feijoo, J.F., Limeres, J., Fernández-Varela, M., Ramos, I., Diz, P.: The 100 most cited articles in dentistry. Clin. Oral Investig. 18(3), 699–706 (2013)
Gao-Yong, L., Ji-Ming, H., Hui-Ling, W.: A co-word analysis of digital library field in China. Scientometrics 91(1), 203–217 (2012)
Garfield, E.: Citation analysis as a tool in journal evaluation. Science 178(60), 417–479 (1972)
Garfield, E.: Introducing citation classics the human side of scientific reports. Curr. Comments 1, 5–7 (1977)
Garfield, E.: 100 citation classics from the journal of the American medical association. J. Am. Med. Assoc. 257, 52–59 (1987)
Garfield, E.: Scientography: mapping the tracks of science. Curr. Contents Soc. Behav. Sci. 7(45), 5–10 (1994)
He, Q.: Knowledge discovery through co-word analysis. Libr. Trends 48(1), 133–159 (1999)
Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Nat. Acad. Sci. 102, 16569–16572 (2005)
Huang, M.-H., Chang, C.-P.: Detecting research fronts in oled field using bibliographic coupling with sliding window. Scientometrics 98(3), 1721 (2014)
Ibrahim, G.M., Snead, O.C., Rutka, J.T., Lozano, A.M.: The most cited works in epilepsy: trends in the “citation classics”. Epilepsia 53(5), 765–770 (2012)
Jin, B.H., Liang, L.M., Rousseau, R., Egghe, L.: The R- and AR-indices: complementing the h-index. Chin. Sci. Bull. 52(6), 855–863 (2007)
Martínez, M.A., Cobo, M.J., Herrera, M., Herrera-Viedma, E.: Analyzing the scientific evolution of social work using science mapping. Res. Soc. Work Pract. 5(2), 257–277 (2015)
Martínez, M.A., Herrera, M., López-Gijón, J., Herrera-Viedma, E.: H-classics: characterizing the concept of citation classics through h-index. Scientometrics 98, 1971–1983 (2014)
Murgado-Armenteros, E., Gutiérrez-Salcedo, M., Torres-Ruiz, F.J., Cobo, M.J.: Analysing the conceptual evolution of qualitative marketing research through science mapping analysis. Scientometrics 102(1), 519–557 (2014)
Noyons, E.C.M., Moed, H.F., Luwel, M.: Combining mapping and citation analysis for evaluative bibliometric purposes: a bibliometric study. J. Am. Soc. Inform. Sci. 50(2), 115–131 (1999)
Ozel, B.: Individual cognitive structures and collaboration patterns in academia. Scientometrics 91(2), 539–555 (2012)
Peters, H.P.F., van Raan, A.F.J.: Co-word-based science maps of chemical engineering. part i: representations by direct multidimensional scaling. Res. Policy 22(1), 23–45 (1993)
Ponce, F.A., Lozano, A.M.: The most cited works in Parkinson’s disease. Mov. Disord. 26(3), 380–390 (2011)
Porter, A.L., Youtie, J.: How interdisciplinary is nanotechnology? J. Nanopart. Res. 11(5), 1023–1041 (2009)
Rodriguez-Ledesma, A., Cobo, M.J., Lopez-Pujalte, C., Herrera-Viedma, E.: An overview of animal science research 1945–2011 through science mapping analysis. J. Anim. Breed. Genet. 132(6), 475–497 (2014)
Rousseau, R.: New developments related to the Hirsch index. Sci. Focus 1(4), 23–25 (2006). (in Chinese) An English translation can be found at: http://eprints.rclis.org/7616/
Small, H.: Visualizing science by citation mapping. J. Am. Soc. Inform. Sci. 50(9), 799–813 (1999)
Smith, D.R.: Ten citation classics from the New Zealand medical journal. N. Z. Med. J. 120, 2871–2875 (2007)
Stack, S.: Citation classics in deviant behavior: a research note. Deviant Behav. 34(2), 85–96 (2013)
Sternitzke, C., Bergmann, I.: Similarity measures for document mapping: a comparative study on the level of an individual scientist. Scientometrics 78(1), 113–130 (2009)
Tam, W.W., Wong, E.L., Wong, F.C., Cheung, A.W.L.: Citation classics in the integrative and complementary medicine literature: 50 frequently cited articles. Eur. J. Integr. Med. 4, e77–e83 (2012)
Tang, L., Shapira, P.: China-US scientific collaboration in nanotechnology: patterns and dynamics. Scientometrics 88(1), 1–16 (2011)
van Eck, N.J., Waltman, L.: How to normalize cooccurrence data? an analysis of some well-known similarity measures. J. Am. Soc. Inform. Sci. Technol. 60(8), 1635–1651 (2009)
van Raan, A.F.J.: Measuring science. In: Moed, H.F., Glanzel, W., Schmoch, U. (eds.) Handbook of Quantitative Science and Technology Research, pp. 19–50. Springer, Netherlands (2005)
Zong, Q.-J., Shen, H.-Z., Yuan, Q.-J., Xiao-Wei, H., Hou, Z.-P., Deng, S.-G.: Doctoral dissertations of library and information science in china: a co-word analysis. Scientometrics 94(2), 781–799 (2013)
Acknowledgments
The authors would like to acknowledge FEDER financial support from the Project TIN2013-40658-P, and also the financial support from the Andalusian Excellence Project TIC-5991.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Herrera-Viedma, E., Martinez, M.A., Herrera, M. (2016). Bibliometric Tools for Discovering Information in Database. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-42007-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42006-6
Online ISBN: 978-3-319-42007-3
eBook Packages: Computer ScienceComputer Science (R0)