Skip to main content

A Hybrid Approach to Sentiment Analysis with Benchmarking Results

  • Conference paper
  • First Online:
Trends in Applied Knowledge-Based Systems and Data Science (IEA/AIE 2016)

Abstract

The objective of this article is two-fold. Firstly, a hybrid approach to Sentiment Analysis encompassing the use of Semantic Rules, Fuzzy Sets and an enriched Sentiment Lexicon, improved with the support of SentiWordNet is described. Secondly, the proposed hybrid method is compared against two well established Supervised Learning techniques, Naïve Bayes and Maximum Entropy. Using the well known and publicly available Movie Review Dataset, the proposed hybrid system achieved higher accuracy and precision than Naïve Bayes (NB) and Maximum Entropy (ME).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anbananthen, K.S.M., Elyasir, A.M.H.: Evolution of opinion mining. Aust. J. Basic Appl. Sci. 7(6), 359–370 (2013)

    Google Scholar 

  2. Appel, O., Chiclana, F., Carter, J.: Main concepts, state of the art and future research questions in sentiment analysis. Acta Polytech. Hung. J. Appl. Sci. 12(3), 87–108 (2015)

    Google Scholar 

  3. Das, S.R., Chen, M.Y., Agarwal, T.V., Brooks, C., Chan, Y.S., Gibson, D., Leinweber, D., Martinez-Jerez, A., Raghubir, P., Rajagopalan, S., Ranade, A., Rubinstein, M., Tufano, P.: Yahoo! for Amazon: sentiment extraction from small talk on the web. In: 8th Asia Pacific Finance Association Annual Conference (2001)

    Google Scholar 

  4. Dzogang, F., Lesot, M.-J., Rifqi, M., Bouchon-Meunier, B.: Expressions of graduality for sentiments analysis - a survey. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–7 (2010)

    Google Scholar 

  5. Esuli, A., Sebastiani, F.: Senti Word Net - a publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation (LREC06), pp. 417–422 (2006)

    Google Scholar 

  6. Hatzivassiloglou, V., McKeown, K.: Towards the automatic identification of adjectival scales: clustering adjectives according to meaning. In: Schubert, L.K. (ed.) ACL: Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics, pp. 22–26, Ohio State University, Columbus, Ohio, USA, pp. 172–182. ACL, June 1993

    Google Scholar 

  7. Hatzivassiloglou, V., McKeown, K.: Predicting the semantic orientation of adjectives. In: Proceedings of the 35th Annual Meeting of the ACL and the 8th Conference of the European Chapter of the ACL, New Brunswick, NJ, USA. ACL, pp. 174–181 (1997)

    Google Scholar 

  8. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings - ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2004 full paper), Seattle, Washington, USA, 22–25 August 2004

    Google Scholar 

  9. Kamps, J., Marx, M., Mokken, R.J., de Rijke, M.: Using Word Net to measure semantic orientations of adjectives. In: Proceedings of LREC-04, 4th International Conference on Language Resources and Evaluation, LREC 2004, vol. IV, pp. 1115–1118 (2004)

    Google Scholar 

  10. Liu, B.: Sentiment Analysis and Opinion Mining, Synthesis Lectures on Human Language Technologies, 1st edn. Morgan and Claypool Publishers, San Rafael (2012)

    Google Scholar 

  11. Miller, G.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)

    Article  Google Scholar 

  12. Nadali, S., Murad, M., Kadir, R.: Sentiment classification of customer reviews based on fuzzy logic. In: 2010 International Symposium in Information Technology (ITSim), vol. 2, pp. 1037–1040, Kuala Lumpur, Malaysia, June 2010

    Google Scholar 

  13. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (ACL 2005), ACL2005, pp. 115–124 (2005)

    Google Scholar 

  14. Pang, B., Lee, L.: Opinion mining and sentiment analysis. NOW Essence Knowl. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  15. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing (EMNLP), vol. 10, pp. 79–86 (2002)

    Google Scholar 

  16. Perkins, J.: Python Text Processing with NLTK 2.0 Cookbook. Packt Publishing, Birmingham (2010)

    Google Scholar 

  17. Potts, C.: Sentiment Symposium Tutorial: Linguistic structure (part of the Sentiment Analysis Symposium held, San Francisco, 8–9 November 2011. Stanford Department of Linguistics, Stanford University (2011). Accessed Dec. 2011

    Google Scholar 

  18. Sadegh, M., Othman, R.I.Z.A.: Combining lexicon-based and learning-based methods for twitter sentiment analysis. Int. J. Comput. Technol. 2(3), 171–178 (2012)

    Google Scholar 

  19. Subasic, P., Huettner, A.: Affect analysis of text using fuzzy semantic typing. IEEE Trans. Fuzzy Syst. 9(4), 483–496 (2001)

    Article  Google Scholar 

  20. Wiebe, J.: Learning subjective adjectives from corpora. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 735–740. AAAI Press (2000)

    Google Scholar 

  21. Xie, Y., Chen, Z., Zhang, K., Cheng, Y., Honbo, D.K., Agrawal, A., Choudhary, A.N.: Mu SES: a multilingual sentiment elicitation system for Social Media Data. IEEE Intell. Syst. 29(4), 34–42 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orestes Appel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Appel, O., Chiclana, F., Carter, J., Fujita, H. (2016). A Hybrid Approach to Sentiment Analysis with Benchmarking Results. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42007-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42006-6

  • Online ISBN: 978-3-319-42007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics