Skip to main content

View-Invariant Gait Recognition Using a Joint-DLDA Framework

  • Conference paper
  • First Online:
Trends in Applied Knowledge-Based Systems and Data Science (IEA/AIE 2016)

Abstract

In this paper, we propose a new view-invariant framework for gait analysis. The framework profits from the dimensionality reduction advantages of Direct Linear Discriminant Analysis (DLDA) to build a unique view-invariant model. Among these advantages is the capability to tackle the under-sampling problem (USP), which commonly occurs when the number of dimensions of the feature space is much larger than the number of training samples. Our framework employs Gait Energy Images (GEIs) as features to create a single joint model suitable for classification of various angles with high accuracy. Performance evaluations shows the advantages of our framework, in terms of computational time and recognition accuracy, as compared to state-of-the-art view-invariant methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our end-to-end implementation is available in: https://yadi.sk/d/MuEE2_tGjJxcq.

References

  1. Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recogn. Lett. 31(13), 2052–2060 (2010)

    Article  Google Scholar 

  2. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  3. Bodor, R., Drenner, A., Fehr, D., Masoud, O., Papanikolopoulos, N.: View-independent human motion classification using image-based reconstruction. Image Vision Comput. 27(8), 1194–1206 (2009). http://www.sciencedirect.com/science/article/pii/S0262885608002412

    Article  Google Scholar 

  4. Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with SVMs. Inf. Retrieval 13(3), 201–215 (2010)

    Article  Google Scholar 

  5. Chen, L.F., Liao, H.Y.M., Ko, M.T., Lin, J.C., Yu, G.J.: A new lDA-based face recognition system which can solve the small sample size problem. Pattern Recogn. 33(10), 1713–1726 (2000). http://www.sciencedirect.com/science/article/pii/S0031320399001399

    Article  Google Scholar 

  6. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)

    Article  Google Scholar 

  7. Iwama, H., Okumura, M., Makihara, Y., Yagi, Y.: The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans. Inf. Forensics Secur. 7(5), 1511–1521 (2012)

    Article  Google Scholar 

  8. Jean, F., Bergevin, R., Albu, A.B.: Computing and evaluating view-normalized body part trajectories. Image Vision Comput. 27(9), 1272–1284 (2009). http://www.sciencedirect.com/science/article/pii/S0262885608002497

    Article  MATH  Google Scholar 

  9. Kale, A., Chowdhury, A., Chellappa, R.: Towards a view invariant gait recognition algorithm. In: IEEE Conference on Proceedings of Advanced Video and Signal Based Surveillance, July 2003, pp. 143–150 (2003)

    Google Scholar 

  10. Kusakunniran, W., Wu, Q., Zhang, J., Li, H.: Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans. Circuits Syst. Video Technol. 22(6), 966–980 (2012)

    Article  Google Scholar 

  11. Liu, N., Lu, J., Tan, Y.P.: Joint subspace learning for view-invariant gait recognition. IEEE Signal Process. Lett. 18(7), 431–434 (2011)

    Article  Google Scholar 

  12. Liu, N., Tan, Y.P.: View invariant gait recognition. In: IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), March 2010, pp. 1410–1413 (2010)

    Google Scholar 

  13. Lu, J., Tan, Y.P.: Uncorrelated discriminant simplex analysis for view-invariant gait signal computing. Pattern Recogn. Lett. 31(5), 382–393 (2010). http://www.sciencedirect.com/science/article/pii/S0167865509003092

    Article  Google Scholar 

  14. Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Mansur, A., Makihara, Y., Muramatsu, D., Yagi, Y.: Cross-view gait recognition using view-dependent discriminative analysis. In: 2014 IEEE International Joint Conference on Biometrics (IJCB), September 2014, pp. 1–8 (2014)

    Google Scholar 

  16. Martín-Félez, R., Xiang, T.: Gait recognition by ranking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 328–341. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-33718-5_24

    Google Scholar 

  17. Muramatsu, D., Shiraishi, A., Makihara, Y., Uddin, M., Yagi, Y.: Gait-based Person recognition using arbitrary view transformation model. IEEE Trans. Image Process. 24(1), 140–154 (2015)

    Article  MathSciNet  Google Scholar 

  18. Muramatsu, D., Shiraishi, A., Makihara, Y., Yagi, Y.: Arbitrary view transformation model for gait person authentication. In: 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 85–90. IEEE (2012)

    Google Scholar 

  19. Sharma, A., Kumar, A., Daume III., H., Jacobs, D.W.: Generalized multiview analysis: a discriminative latent space. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2160–2167. IEEE (2012)

    Google Scholar 

  20. Sugiyama, M.: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J. Mach. Learn. Res. 8, 1027–1061 (2007). http://dl.acm.org/citation.cfm?id=1248659.1248694

    MATH  Google Scholar 

  21. Tao, D., Li, X., Wu, X., Maybank, S.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

    Article  Google Scholar 

  22. Yan, S., Xu, D., Yang, Q., Zhang, L., Tang, X., Zhang, H.J.: Discriminant analysis with tensor representation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 526–532. IEEE (2005)

    Google Scholar 

  23. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recogn. 34(10), 2067–2070 (2001). http://www.sciencedirect.com/science/article/pii/S003132030000162X

    Article  MATH  Google Scholar 

  24. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 4, pp. 441–444 (2006)

    Google Scholar 

  25. Zhang, Z., Troje, N.F.: View-independent person identification from human gait. Neurocomputing 69(13), 250–256 (2005). http://www.sciencedirect.com/science/article/pii/S0925231205001797, Neural Networks in Signal Processing 2003 IEEE International Workshop on Neural Networks for Signal Processing

    Google Scholar 

  26. Zhao, G., Liu, G., Li, H., Pietikainen, M.: 3d gait recognition using multiple cameras. In: 7th International Conference on Automatic Face and Gesture Recognition, FGR, April 2006, pp. 529–534 (2006)

    Google Scholar 

  27. Zheng, W.S., Lai, J., Li, S.Z.: 1D-LDA vs. 2D-LDA: when is vector-based linear discriminant analysis better than matrix-based? Pattern Recogn. 41(7), 2156–2172 (2008). http://www.sciencedirect.com/science/article/pii/S0031320307005274

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work has been financed by Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico and by Secretaria de Educacion Publica, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Perez-Meana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Portillo, J. et al. (2016). View-Invariant Gait Recognition Using a Joint-DLDA Framework. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42007-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42006-6

  • Online ISBN: 978-3-319-42007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics