Abstract
Hippocampus segmentation from MR infant brain images is indispensable for studying early brain development. However, most of hippocampus segmentation methods were developed for adult brain images, which are not suitable for infant brain images of the first year due to low image contrast and variable structural patterns of early hippocampal development. To address these challenges, we propose a boundary regression method to detect hippocampal boundaries in the infant brain images, and then use the obtained boundaries to guide the deformable segmentation. The advantages of our segmentation method are: (1) different from the recently-developed atlas-based hippocampus segmentation methods, our method does not perform time-consuming deformable registrations; (2) different from the conventional point-regression-based boundary detection methods, our boundary regression method can predict the whole hippocampal boundary by a single regression model. Experiments on MR infant brain images from 2-week-old to 1-year-old show promising hippocampus segmentation results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Thompson, D.K., Ahmadzai, Z.M., Wood, S.J., Inder, T.E., Warfield, S.K., Doyle, L.W., Egan, G.F.: Optimizing hippocampal segmentation in infants utilizing MRI post-acquisition processing. Neuroinformatics 10, 173–180 (2012)
Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.: Nonlocal patch-based label fusion for hippocampus segmentation. In: Jiang, T., Navab, N., Pluim, J.P., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 129–136. Springer, Heidelberg (2010)
Awate, S.P., Whitaker, R.T.: Multiatlas segmentation as nonparametric regression. IEEE Trans. Med. Imaging 33(9), 1803–1817 (2014)
Wu, G., Wang, Q., Zhang, D., Nie, F., Huang, H., Shen, D.: A generative probability model of joint label fusion for multi-atlas based brain segmentation. Med. Image Anal. 18, 881–890 (2014)
Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)
Shao, Y., Gao, Y., Yang, X., Shen, D.: CT prostate deformable segmentation by boundary regression. In: Menze, B., et al. (eds.) MCV 2014. LNCS, vol. 8848, pp. 127–136. Springer, Heidelberg (2014)
Chen, C., Xie, W., Franke, J., Grutzner, P., Nolte, L.-P., Zheng, G.: Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements. Med. Image Anal. 18, 487–499 (2014)
Cootes, T.F., Ionita, M.C., Lindner, C., Sauer, P.: Robust and accurate shape model fitting using random forest regression voting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 278–291. Springer, Heidelberg (2012)
Kohlberger, T., et al.: Automatic multi-organ segmentation using learning-based segmentation and level set optimization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 338–345. Springer, Heidelberg (2011)
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Gao, Y., Shen, D.: Context-aware anatomical landmark detection: application to deformable model initialization in prostate CT images. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 165–173. Springer, Heidelberg (2014)
Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1744–1757 (2010)
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21, 163–169 (1987)
Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: sparse shape Compos. Med. Image Anal. 16, 265–277 (2012)
Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002)
Guo, Y., Wu, G., Commander, L.A., Szary, S., Jewells, V., Lin, W., Shen, D.: Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 308–315. Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Shao, Y., Guo, Y., Gao, Y., Yang, X., Shen, D. (2016). Hippocampus Segmentation from MR Infant Brain Images via Boundary Regression. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2015. Lecture Notes in Computer Science(), vol 9601. Springer, Cham. https://doi.org/10.1007/978-3-319-42016-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-42016-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42015-8
Online ISBN: 978-3-319-42016-5
eBook Packages: Computer ScienceComputer Science (R0)