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Abstract. The introduction of ontological classification to support domain-meta-
modeling has been pivotal in the emergence of multi-level modeling as a dy-
namic research area. However, existing expositions of ontological classification
have only used a limited context to distinguish it from the historically more com-
monly used linguistic classification. In important areas such as domain-specific
languages and classic language engineering the distinction can appear to become
blurred and the role of ontological classification is obscured, if not fundamen-
tally challenged. In this paper we therefore examine critical points of confusion
regarding the distinction and provide an expanded explanation of the differences.
We maintain that optimally utilizing ontological classification, even for tasks that
traditionally have only been viewed as language engineering, is critical for mas-
tering the challenges in complex systems modeling including the validation of
multi-language models.
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1 Introduction

Ontological classification was originally suggested in conjunction with linguistic classi-
fication as part of a dual classification scheme to address inconsistencies in the original
four-layer architecture associated with the UML [8]. Without an improved understand-
ing of the precise nature of the four layers and the relationships between them, it was
not possible to reconcile the intended linear organization of the layers [28] with the
overall architecture’s claims to strictness [3]. Recognizing two different classification
principles and combining them in a dual classification architecture turned out to be the
key to allow strictness to be enforceable in two orthogonal dimensions [7].

Being explicit about the ontological and linguistic classification dichotomy also
proved to be useful for achieving a better understanding of tool infrastructure choi-
ces [9], and most importantly, provided a foundation for deep modeling, i.e., the idea
of explicitly using multiple ontological classification levels for domain modeling. This
approach helped shift the focus from metamodeling as a tool building technique to a
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user-centered, ontological modeling paradigm [8]. Often found in combination with
various forms of deep characterization [6], dual classification has therefore become the
foundation for a number of research tools [22,32,14,4,21], and a growing research
community [1].

In this regard, dual classification (i.e., the distinction between ontological and lin-
guistic classification and their combined usage), has been a success. However, while the
distinction between the two classification flavors is straightforward in certain architec-
tures and application contexts [7], recognizing the two flavors and fully utilizing their
strengths can be challenging in less clear-cut contexts. For instance, at first sight there
does not appear to be a difference between a linguistically defined domain-specific lan-
guage and an ontological multi-level model for the same domain. Some tools hence
allow, if not promote, the use of ontological classification levels for doing what would
widely be regarded as language engineering [5,23] even though such practice seems at
odds with the ontological versus linguistic dichotomy. Such apparent interchangeability
of linguistic and ontological classification makes it very difficult to judge which form
of classification is, or should be, used for particular purposes, and ultimately challenges
the foundations of the distinction.

In this paper we first briefly summarize the existing main expositions of ontological
and linguistic classification (Sect. 2) and then elaborate the previously alluded to points
of confusion (Sect. 3). Subsequently we present an expanded explanation of the dis-
tinction (Sect. 4) to then show how it can resolve all points of confusion (Sect. 5). We
conclude by arguing that a proper use of both ontological and linguistic classification
will be pivotal in addressing modern modeling challenges (Sect. 6).

2 Background

Fig. 1 illustrates a classic, clear-cut application of dual classification in the OCA [7]. A
linguistic type model comprising the linguistic types (in the right-hand side level labeled
“Linguistic Types”) plays the role of a traditional language definition which controls the
form of entities and their relationships in user models (in the middle-column “Model
. . . ” levels). In contrast, the ontological types in the user type model level (middle-top
“Model Types” level) represent domain classifiers, such as the Platonic idea of “Track
Piece” (light bulb in the “Universe of Discourse” (UoD)). Classification relationships
(labeled “ontological”) between elements in adjacent user model levels represent re-
spective classification relationships in the UoD.

Existing descriptions of the dual classification approach referred to the linguistic
types as controlling “form” and the ontological types as controlling “content” [9]. Fur-
thermore, linguistic types (such as Object) directly classify elements of language usage
(such as main47), whereas ontological types (such as TrackPiece) only classify elements
of language usage (such as main47) via proxy with respect to the UoD, meaning that
ontological classification relationships are always motivated by respective classification
in the UoD [20]. Linguistic types have therefore been characterized as giving rise to a
notation / language whereas ontological types have been understood as reflecting clas-
sifiers in the domain (which may or may not exist and which may or may not have types
themselves, depending on the domain).
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Fig. 1. Classic Dual Classification Example

We may observe that linguistic classification, as described above, has a long tradi-
tion in computer science. A classic language grammar can be regarded as linguistically
classifying the allowed sentences of a language [19] and most so-called “metamod-
els” [28] are linguistic type models of the models they support the generation of [20].
Fig. 1 is not an attempt to accurately reflect part of the UML “metamodel” but intention-
ally uses a simplified approach to illustrate that TrackPiece and main47 can be regarded
as modeling elements created from linguistic types Class and Object respectively. Such
language definitions may incorporate well-formedness constraints that go beyond sim-
ple syntactic construction rules (static semantics [16]), but typically defer the definition
of the semantics of a language (dynamic semantics [16]) to a separate transformation
(Kermeta being one of the notable exceptions [27]).

We may further observe that ontological classification is intended to accurately cap-
ture the relationship between the meanings of a user-created type (here a UML class
TrackPiece) and a user-created instance (here a UML object main47). The user-created
type does not linguistically classify the user-created instance – i.e., it does not give the
latter the ability to have a name, slots, and links – but rather just constrains the compli-
ance of the content of the main47 object to the content of the TrackPiece class.

When the distinction between the two classification flavors is described as above
it seems that they form a true dichotomy and the task of telling them apart is a trivial
one. However, in the next section we will enumerate several situations which seem to
challenge this assumption in order to identify points of confusion that may easily occur
when applying dual classification.
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3 Points of Confusion

The apparent blurring of the distinction between ontological and linguistic classification
appears in scenarios that differ from the use of multi-level domain models to describe
naturally occurring classification hierarchies, i.e., the scenario typically used to explain
dual classification. In the following we will consider three such scenarios of particular
significance to modelers:

1. Domain-Specific Languages.
2. Classic Language Engineering.
3. Dichotomy-Ambivalent Modeling.

3.1 Domain-Specific Languages

linguisticmain47

length = 100

TrackPiece

length : Integer

length = 100

Language DefinitionModel ElementsUniverse of Discourse

Fig. 2. A Domain-Specific Modeling Language Fragment for Train Control

In Fig. 2 we use the standard OCA coloring of levels to illustrate a case when Track-
Piece is used as a linguistic type. Such a scenario occurs when a language engineer
uses a metacase tool like AtoMPM [30] or just a classic textual grammar approach [19]
to define a domain-specific language which aims at specifically representing elements
of interest to the language user, in this example a language for train control. We are
not excluding the possibility that the language engineer may also associate a domain
concept “Track Piece” with the type TrackPiece they are including in their language
definition, but the tool choice and the modeler’s primary intent – to create signs / tokens
such as main47 that are devoid of meaning unless a semantics is associated with them
via a transformation – technically makes TrackPiece a linguistic type (cf. Sect. 2).

However, this interpretation of TrackPiece creates a tension with the prior under-
standing of TrackPiece as being an ontological type (cf. Fig. 1). The TrackPiece types
in Figs. 1 & 2 are indistinguishable from each other, including the choice of attributes.
Apparently the choice of a domain-specific language, rather than a general-purpose
language that contains more generic types such as Object, made the previously distinct
difference between ontological and linguistic classification dissolve.

This raises the question as to whether ontological classification is just a way of
introducing domain-specificity into general purpose languages and, hence, whether it
is then worth maintaining a dual classification scheme. At the very least the examples
shown in Figs. 1 & 2 illustrate that a modeler may find it hard to ascertain whether
TrackPiece should be regarded as an ontological or a linguistic type.
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3.2 Classic Language Engineering
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Fig. 3. Defining Notation within Ontological Levels

Fig. 3 depicts the case of using on-
tological levels (i.e., “Model Types”
and “Model Instances”) to perform
classic language engineering, i.e., to
define a language (here, in level
“Model Types”) to be used for some
purpose (here in level “Model In-
stances”, to represent a track piece).
Note that in this scenario the purpose
of Object is not to represent a domain
concept but merely to create tokens
such as main47 so that the latter can
subsequently be used for purposes
like analysis, simulation, and code
generation. Therefore we did not as-
sociate the usual light bulb with Ob-
ject but just an extension of all nota-
tional elements classified by Object.
This, however, can be regarded as shortcut for a light bulb concept in the semantic do-
main of “language semantics” that has the set shown in Fig. 3 as its extension. This
approach is consistent with the traditional association of a so-called “extensional se-
mantics” for types like Object.

Tools like Melanee and MetaDepth have been shown to be usable for language en-
gineering purposes [5,23], so it seems that Fig. 3 visualises the corresponding scenario
of using ontological classification for what appears to be linguistic control.

Note that element main47 is presented using a user-friendly concrete syntax. In-
stead of showing the underlying representation – a slot list containing an entry that has
a length name and a 100 value – main47 is presented in a manner that focuses on the
content rather than the representation. Such presentation choices can go as far as render-
ing main47 as an icon that looks like a track piece [5]. The availability of presentation
alternatives contributes to blurring the distinction between ontological classification and
linguistic classification because it makes it appear that the former can now be perfectly
used in place of the latter in order to perform language engineering.

However, if the use of ontological classification is not in conflict with such examples
then how is it possible to determine whether a type like Object truly is a linguistic
classifier or an ontological classifier?

3.3 Dichotomy-Ambivalent Modeling

The scenario shown in Fig. 4 is meant to show a multi-level model whose interpretation
is ambiguous. On the one hand, the model could be read as a domain-model representing
agent activities, concepts that govern those activities, and meta-concepts that govern the
latter. In this case, the classification relationships between levels should be characterized
as “ontological” (cf. Sect. 2).
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On the other hand, the model could be read as an example of two-tier, classic lan-
guage engineering. In the example shown, a process definition language is defined at the
“Model Types” level and is itself the result of using a process metamodeling language.
The fact that the model uses deep characterization (a potency-two attribute duration)
does not rule out a language definition scenario, but rather illustrates how deep char-
acterization can also be useful when defining (families of) languages. In any event, as
the intention in language engineering is to control form, the classification relationships
between the levels in Fig. 4 therefore appear to be best characterized as “linguistic”.

Model Types

Model Instances

ActivityType

duration2 : Integer

BobCreatesDesign

duration = 5.3

CreateDesign

duration : Integer

Model Metatypes

Fig. 4. Dichotomy-Ambivalence

Both of the aforementioned interpretations of
Fig. 4 appear to be equally valid depending on per-
spective and purpose. This implies that even if one in-
terpretation was intended at the time of creation of the
model, re-purposing it for the opposing interpretation
seems to be seamlessly supported. Hence, it could be
argued that tools like Melanee or MetaDepth that are
regularly used for defining languages as well as for
domain modeling [5,23] could be regarded as not only
supporting a dual purpose but, beyond that, enabling
modelers to be ambivalent about their actual purpose,
thus freeing the modeler from difficult deliberations.
Arguably,

– the same classification compliance rules can be
used for both classification flavors,

– user interactions with classifiers are the same re-
gardless of their flavor, and

– types like ActivityType apparently can be equally given an ontological as well as a
linguistic reading.

Therefore, the questions arise as to

1. how one can claim that the classification flavors form a dichotomy, and
2. why one should burden users of multi-level tools with difficult deliberations about

which classification principle they intend, if ambivalence even seems preferable?

That said, there is of course still a fundamental question of whether the use of
ontological levels for defining languages is in accordance with the principles of dual
classification (cf. Sect. 2) and, if not, whether that suggests that the principles of dual
classification are a hindrance to optimal modeling pragmatics.

Summarizing, all three scenarios presented in this section strongly suggest that on-
tological and linguistic classification do not appear to form a long-implied “black and
white” dichotomy. If types like TrackPiece and Object can interchangeably appear in
both ontological and linguistic type levels and it seems best to not assign a flavor to
types like “Process Type” then on what basis can anyone decide which classification
flavor a type should have?

In order to answer this question in the next section, we describe the basis for the
dual classification principle at a deeper level.
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4 Illuminating Dual Classification
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Fig. 5. Dual Classification

Fig. 5 attempts to shed more light on the distinction between linguistic and ontolog-
ical classification by

– using an example that better highlights the fundamental differences, and
– illustrating a differentiating aspect that publications on the OCA have hitherto ne-

glected.

We deliberately presented the model in Fig. 5 in a manner that allows two readings:

1. a real world scenario in which the four modeling elements dollar bill, coin, ban-
knote mold, and coin mold can be regarded as real-world items.

2. a multi-language model that uses a domain-specific presentation for some of its
modeling elements.

The idea behind the first “real world” reading of Fig. 5 is to view items of legal tender,
such as a dollar bill or a dollar coin, as being formed by bill printing and coin minting
molds respectively. The formed tokens (bills and coins) are then assigned “meaning”,
in this example their purchasing power. Note that in the real world dollar bills and coins
indeed play the role of models, i.e., they are placeholders for their meaning. Purchasing
power is referred to as “value” in Fig. 5 and amounts to “$1” for both bill and coin.
This value of a legal tender item is distinguished from its material worth. Typically the
material worth is lower (e.g., in case of the dollar bill) but it can also be higher (e.g., in
the case of special collector variants of coins).
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The intention behind allowing the first reading is to make it unequivocally clear that

– linguistic types can be regarded as molds. They are used in a constructive mode
in the vast majority of cases to coin model elements. They simply produce tokens
which are to be interpreted in a second step. The tokens have no intrinsic meaning
and may have rather different meanings depending on the context. For instance, the
four characters “GIFT” may mean “present” (in English) or “poison” (in German).

– generated model elements are signs / tokens which have their own intrinsic proper-
ties, independently of their meaning. In the example of Fig. 5 the materials used for
the bank note are assumed to be worth 67 cents whereas the dollar coin is a silver
seated liberty dollar whose melt value is $22.62. We deliberately chose an example
for Fig. 5 in which the meaning of “value” is overloaded in the sense that it could
apply (linguistically) to the value of the model element itself, or (ontologically) to
the value assigned to the model element via an interpretation. This resolvable over-
loading illustrates that one must be careful to identify the subject, i.e., either the
model element itself or its meaning, when attributing properties.

– generated model elements may have various meanings. In descriptive models they
represent elements in the UoD but they can also have a prescriptive role, e.g., pre-
scribing a system to be built, or simply be assigned some semantics, i.e., execu-
tion semantics. Sometimes such additional semantics are referred to as interpreta-
tions [29]. In the example in Fig. 5, the ontological interpretation of the items of
legal tender is an abstract “$1” concept that only exists due to the notion of legal
tender, i.e., nowadays “fiat money”.

– the semantic domain of a model can reasonably be thought of containing (Platonic)
ideas [7]. In the example we again use a light bulb to denote the logical idea which
specifies the requirements on legal tender. Such ideas are represented by model ele-
ments at the “Model Types” level. Note that they do not specify properties of model
elements, i.e., in the example LegalTender neither characterizes the dollar bill nor
the dollar coin. In particular, LegalTender is not a generalization of all model ele-
ment types that characterize legal tender tokens. Rather LegalTender characterizes
the abstract money concept of “$1” and, of course, other amounts.

The above elaborations help to re-iterate the fact that ontological types do not directly
characterize model instances. Ontological types rather represent ideas which in turn
characterize instances, with the latter being represented by model instances. Linguistic
types, on the other hand, directly describe properties of the tokens they produce. For
example in “Love is a four-letter word” the predicate “four-letter word” applies to the
word “love” itself, i.e., is a linguistic characterization. From an ontological viewpoint,
the classification of “love” should be “Love is an emotion”, i.e., refer to the meaning of
the word “love”.

With the above in mind, we may now observe that Fig. 5 illustrates an aspect of
ontological classification that has so far not been mentioned in previous publications on
the OCA:

– Ontological classification does not require literal conformance, i.e., in contrast to
linguistic types, ontological types do not have to stipulate syntactic compliance.
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In the example of Fig. 5, the seated liberty dollar absolutely must have certain physical
properties, otherwise it could not be considered to be a linguistic instance of the minting
mold that coined it. As the minting mold imprints all its features on all coins, they are
all guaranteed to have the respective features. In the example we are assuming that the
same materials will always be used in production hence every coin will feature the same
material worth.

In contrast, the ontological type LegalTender specifies a requirement – i.e., for all
instances to have a certain purchasing power – that is not directly expressed in its in-
stances. None of the LegalTender instances directly carry a value feature. Whether or
not they have a value is determined by looking up what they represent in the semantic
domain. Only through referencing the meaning of model instances do we obtain the
knowledge that both dollar bill and coin are instances of LegalTender with the value
“$1” (hence the arrows from “$1” to the “value = 1”-properties in Fig. 5).

The fact that legal tender items have their intended value printed on them should
not be mistaken with an expression of “meaning” as a physical property. For instance,
if dollar bills were taken out of circulation then they would still claim a nominal face
value of “$1” but their meaning would be “$0”.

In the light of the above, we can therefore confirm that ontological instantiation can
be regarded as semantically-founded and does not require literal compliance between
model instances and their model types. We may thus alternatively refer to ontologi-
cal classification as “semantic classification”, whereas linguistic classification may be
referred to as “syntactic classification”. A linguistic type should be thought of syntacti-
cally classifying tokens (which may be given meaning in a subsequent step) whereas an
ontological type should be thought of as semantically classifying tokens by represent-
ing a domain concept which in turn has domain instances which are represented by said
tokens.

In practice, it makes sense for most ontological (semantic) classification relation-
ships to rely on syntactic conformance as well, i.e., be no more flexible than linguistic
classification. A syntactic conformance check is trivial to implement while a true se-
mantic check would require an explicit representation of a semantic domain, the defini-
tion of a corresponding mapping, and the definition of a semantic check within the se-
mantic domain. This significant difference in complexity explains why simple syntactic
checking is almost universally accepted as a shortcut for semantic checking. Arguably,
however, some languages like Eiffel [25] and JML [24], attempt to approximate a se-
mantic check for objects by allowing the specification of pre- and post-conditions, albeit
only in terms of a testing semantics. This latter limitation of ambition highlights another
problem with a full semantic check: in general, its computation may be intractable or
even undecidable.

5 Points of Confusion Clarified

Equipped with the above clarifications, we are now in a position to revisit the points of
confusion around the dual classification principle identified in Sect. 3.
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5.1 Ontological Types used for Linguistic Classification

The first challenge we elaborated upon in Sect. 3 stemmed from the fact that any domain
model involving types and instances can be regarded as a (domain-specific) language
definition (model types) with its corresponding language use (model instances).

However, with the function of linguistic classifiers confirmed as merely producing
tokens that do not carry any inherent meaning within themselves, it becomes clear that
even though types in a domain-specific language definition could have the appearance
of ontological types, they do not in any way fulfill the same function.

The linguistic TrackPiece type with its attribute “length : Integer” in Fig. 2 only
creates a token (placeholder) that is able to capture a value for the key “length”. The
ontological type TrackPiece in Fig. 1, on the other hand, denotes the existence of the
Platonic idea “Track Piece” as part of a railway system where the “length” of a piece
has implications for the trains that run on it, giving rise to pieces that may or may not al-
low collisions of trains, etc. While the actual semantics associated with the ontological
TrackPiece and its main47 instance may be rather simple or may even not have a rep-
resentation at all, at least in terms of potential the ontological type TrackPiece signifies
something entirely different to the linguistic type TrackPiece (cf. the “value” discussion
in Sect. 4).

More specifically, while the two occurrences of TrackPiece in Figs. 1 & 2 look
identical and interchangeable, this observation only holds with respect to their form
outside a particular context. Just as a UML class diagram may be read as a type model
(e.g., with its types classifying elements in the UoD) or as a token model (e.g., with its
types being tokens which represent respective Java classes) [20], it is possible to read
one and the same TrackPiece type as a linguistic type or as an ontological type.

This room for interpretation, however, must not be confused with arbitrariness or
a fuzzy demarcation line. Just as with the type model versus token model analogy, it
is not possible to ascertain the nature of a type’s classification principle from the type
alone. In the absence of any knowledge regarding the role the type is playing, it is not
possible to make any statement about its function and/or nature. However, once the role
is known, it is no longer possible to mistake one role with the other.

As a result, arguably the choice of name for the linguistic TrackPiece type is a
poor one. After all, the type actually classifies model elements, i.e., tokens, as opposed
to track pieces themselves. Strictly speaking, the appropriate name for the linguistic
TrackPiece type should be “TrackPieceToken” (or similar).

Note that in contrast the name for the ontological type TrackPiece should not be
“TrackPieceObject” (or similar). In the ontological dimension the intent is to actually
classify the domain instances themselves. Model elements such as main47 (referred to
as “instance specifications” in the UML) represent domain instances but whenever they
are referenced, e.g., as instances of TrackPiece, one intends to refer to their meaning,
i.e., the domain instances themselves. The importance of understanding the different
functions of linguistic versus ontological types, and hence the significance of proper
naming, can be illustrated by analyzing what the respective types fix and what they
leave open. Fig. 5 illustrates a scenario where two different tokens (coin and bill) have
the same meaning, i.e., could be regarded as being synonyms. In this example, linguistic
diversity is supported but semantic ambiguity is ruled out.
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However, there are also homonyms, i.e., signs that are indistinguishable from each
other but have different meanings. For example the sentence ”I seem to be having
tremendous difficulty with my lifestyle” has only one linguistic type (e.g., “Sentence”)
but depending on its ontological type (e.g., “Casually Muttered Phrase” versus “Dread-
ful Insult In The Vl’Hurg Tongue”), it could either represent a personal self-reflection
or an insult that leads to the decimation of an entire galaxy [2]. It therefore becomes
obvious that knowing main47’s linguistic type amounts to entirely different knowledge
compared to knowing its ontological type, even though the two can seem indistinguish-
able on the surface.

Despite their arguably somewhat misleading naming choices (i.e. using “Track-
Piece” rather than “TrackPieceToken”), classic language engineers are obviously aware
that their types only define a notation, rather than capture semantic properties. After
all, they use the term “metamodel” whenever they use a linguistic type model to de-
fine the syntax of a language. In contrast, a regular UML modeler would not refer to a
UML class diagram which only contains simple types that represent domain concepts
as a “metamodel”, even though the class diagram could be regarded as a model of other
models, i.e., object diagrams.

As mentioned before, we are not excluding the possibility that a language engineer
may also associate a domain concept “Track Piece” with their linguistic type, thus giv-
ing more credence to their naming choice. However, as the above analysis shows, it is
important to keep the two different purposes apart. Unconsciously confounding them
is akin to failing to acknowledge the difference between the properties of real world
elements and the properties of model elements that model them [17].

5.2 Linguistic Types used in Ontological Levels

In Sect. 3 we observed an apparent conflict due to the fact that it seemed possible to
view a linguistic type like Object as an ontological type (cf. Fig. 3). Closer scrutiny
reveals that two ingredients are necessary for this apparent conflict to arise:

1. the ability to choose “language engineering” as the semantic domain, and
2. the possibility to reinterpret a classification relationship.

Ontological classification between model elements mirrors logical instantiation in the
domain, so when one chooses a domain in which language elements playing the role of
instances are classified by language elements playing the role of types then the respec-
tive classification relationships give rise to respective ontological classification. In short,
a notation and its definition can be given a structural semantics which in turn gives rise
to semantic classification between the notation and its definition. This first ingredient
therefore stems from the fact that any language definition combined with its corre-
sponding language use can be regarded as a domain model with types (the language
definition) and instances (the language use). In other words, a “linguistic meaning” is
one of the many meanings ontological classification can embody.

Yet, this does not constitute any conflicts regarding the nature of a classifier. The
ontological classifier Object in Fig. 3 has a linguistic purpose, i.e., to control the form
(not the meaning) of main47. However, it achieves this purpose through ontological
classification, i.e., by representing the Platonic concept of a token type (here Object).
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There are two options for making this token type control instances (e.g., main47):
First, the semantic domain of the token type is defined to be the ontological level where
the target instances (e.g., main47) reside. This would amount to hosting actual linguis-
tic types in ontological levels as the characteristic “compliance” relationship (cf. Fig. 5)
would be missing. The second option is to choose the semantic domain of the token
type to be in the same “Language Semantics” domain as the token type and defining
the meaning of the target instances to be that of their counterparts in the semantic do-
main. A semantic check within the semantic domain validates whether there is syntactic
compliance and if the latter is established then it confirms the ontological “instance of”
relationship between main47 and its ontological type Object. This would support a pure
ontological understanding of the form control exerted by the token type. This approach
could readily be supported by any tool featuring ontological levels and the ability to map
their contents into a semantic domain with an associated semantic checking function.

The fact that semantic (ontological) classification can be “downgraded” to effec-
tively fall back to a syntactic (linguistic) check as in option 2 above, makes it impossible
to judge the ultimate purpose of a type by just looking at it, even when its ontological
role is known. However, any ambiguity is resolved when the context is provided. With
the intended universe of discourse or semantic domain known, the type’s purpose will
be revealed to either classify the domain instances or the model elements.

It is worth pointing out that not every ontological type can play the role of a linguis-
tic classifier for its model instances. While the ontological type TrackPiece in Fig. 1
could indeed play the role of a linguistic classifier for main47, the ontological type
LegalTender could not play the role of a linguistic classifier for a coin, as the latter does
not have a physical “value” property (only a “worth” and a mapping to a semantic do-
main that assigns it a value). This suggests a partial litmus test for ontological types:
If the conformance between model instance and its type is not literal, i.e., not a plain
syntactic conformance, then the type cannot be a linguistic type.

Since ontological classification entails an inherent ambiguity regarding the ultimate
purpose (in the absence of any knowledge about the intended semantic domain), it
would seem advisable to use some notation to signify the purpose of ontological types
(i.e. domain modeling versus notation definition), similar to a clef in musical notation
which clarifies the absolute pitch of the notes that follow it.

5.3 Postponing Role Assignments

The conclusions from section Sect. 4 and the previous analyses established that a dual
interpretation of types is possible but that the respective meanings associated with the
different roles are fundamentally different. Of course, this has implications for the idea
of a perspective-based interpretation of types and/or the flexible re-purposing of types
in approaches/tools that aim to allow users to be ambivalent about the type roles.

The premise that both ontological and linguistic classification can be supported by
a tool assuming a single classification principle is correct in the sense that the types as
such do not imply a commitment. Even if such a tool essentially only supports structural
control over instances then it will obviously support language engineering, as well as
domain modeling. However, there are disadvantages to such an approach:
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Lack of Semantic Typing True semantic checking which involves transformations into
the semantic domain and a subsequent check within the semantic domain is not sup-
ported. That leaves modelers with the limited expressiveness and flexibility of syntactic
typing, denying them the additional abstraction that semantic typing affords.

Only Simple Language Support Ontological classification hierarchies are linear by
nature. If language engineering is restricted to a linear hierarchy, however, it is difficult
to cleanly support languages with a built-in notion of classification. Enabling a nesting
of levels to accommodate language engineering would also be at odds with the premise
that no commitment to a classification role is ever required since nesting would not
make sense for an ontological interpretation.

Ambiguity Considered Harmful Arguably, it makes sense for a modeler to be con-
scious about what classification flavor they have in mind. The choice of features and
their names, for example, can depend on whether one intends a semantic or a syntactic
commitment (cf. Sect. 4, regarding the overloading of “value” for coins). Also, in the
case of a semantic commitment description logics could be used to capture semantic
knowledge in the domain whereas in the case of a syntactic classification only, simple
attributes are sufficient as a specification. Finally, if a modeler is not clear about the
intended role, they may mix linguistic and ontological roles in a single model without
realizing the inconsistencies. In one type an attribute may be labeled “nameString” (in-
dicating a linguistic intent) whereas an associated type could use “name” (indicating an
ontological intent).

The first issue from above could be addressed by choosing an ontological interpre-
tation as the default and viewing applications of language engineering as ontological
modeling with respective structural checks performed in the semantic domain. The sec-
ond issue, however, points out a real limitation of tools supporting linear classification
levels with respect to defining languages that feature a notion of instantiation. While it
is possible to model such instantiation relationships, the tool would not be able to rec-
ognize and support their significance. The last point suggests that future work should
clarify which kinds of ambivalence are welcomed as supporting re-purposing and which
may be considered harmful as they mask fundamental differences.

6 Conclusion

Linguistic classification has an undisputed role in computer science as the basis for
formalization and classic language engineering. While the recognition of ontological
classification has helped to spawn a research field, its previous expositions have also
created misunderstandings [10] and made it difficult to distinguish it from linguistic
classification in certain scenarios (cf. Sect. 3).

In order to clarify the role of ontological classification, in this paper we identified
critical differences between linguistic and ontological classification that have not been
highlighted before. We observed that

– “semantic classification” could be an alternative name for ontological classification
as it emphasizes the inherent reference to a UoD or a semantic domain.
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– ontological classification does not require literal conformance as it captures seman-
tic properties of subject instances, as opposed to creating carriers for semantics.

– the use of the name “linguistic classification” should not be construed to imply that
all language definition must exclusively occur through linguistic classification.

Earlier publications on the ontological versus linguistic dichotomy only dealt with
straightforward scenarios and hence did not highlight the above aspects. In this paper we
furthermore made the key observation that in order to avoid confusion one must reject
the assumption that a type is intrinsically either an ontological or a linguistic type.
We clarified that one and the same type may play an ontological role in one context
and a linguistic role in another context (cf. Sect. 4). We thus emphasized that a type’s
purpose in a particular context is important to understand its role and that the dichotomy
therefore does not apply to types themselves, but to the roles they play.

Yet, even if an ontological role is confirmed, e.g. by applying respective litmus tests
(cf. Sect. 5.2), the intended use of the type may not be entirely clear. In Sect. 5.2 we
noticed that this stems from the fact that a semantic test can boil down to a structural
conformance check and that the respective ontological classification can hence be in-
distinguishable from linguistic classification, in terms of its effect and in the absence of
knowledge about the semantic domain.

Sect. 3.3 made the case that such ambiguity could be the basis for an approach that
promotes dichotomy ambivalence as a feature. However, we also pointed out a list of
limitations associated with linear hierarchies built on this principle (cf. Sect. 5.3). We
believe future work should provide a comprehensive analysis of the trade-offs involved
in using the “ambivalent classification” approach. On the one hand it appears to liberate
modelers from potentially difficult deliberations, but on the other hand modeler obliv-
iousness may cause inconsistencies and even inappropriate modeling (cf. Sect. 5.1).
There is no immediate resolution to this issue since – as we mentioned in Sect. 3.1 –
the definition of a notation need not always be in conflict with simultaneously capturing
domain semantics. Hence, the options of banning ontological classification from only
exerting form control, explicitly distinguishing within ontological hierarchies between
domain semantics versus form control, or promoting ambivalence or even agnosticism
should be evaluated in future work.

Undoubtedly, however, we expect ontological classification to play an integral role
in the future of modeling when used with the expanded interpretation we have offered
in this paper. First, by exploiting the liberation from syntactic conformance it is possi-
ble to accommodate more flexible classification relationships based on meaning rather
than syntax. For example, immaterial differences, such as different naming choices like
“diameter” versus “width”, do not prevent instances from being recognized as belong-
ing to the same category (e.g., “Shape”). Such emphasis on the meaning rather than the
structure of data is the underpinning for the “Semantic Web” and its associated “Web
Ontology Language”.

Second, ontological classification provides a new means of injecting semantics into
modeling. In contrast to Barroca et al. [11] who use ontological types to support the
reuse of property definitions (e.g. “liveliness”, “safety”, etc.) that are otherwise often
captured with additional property specification languages [26], we suggest that ontolog-
ical types should also incorporate domain semantics for natural types such as “Special-



Demystifying Ontological Classification in Language Engineering 15

istWorker”, etc. In other words while we support the use of ontological (property) types
to represent so-called “appredicators”, we believe ontological types will also prove to
be very useful for representing so-called “(eigen-)predicators”.

We thus advocate ontological types as a bridge [18] between the semantically-
oriented world of ontology engineering [12] and the syntactically-oriented word of
classic language engineering [19]. Enhancing traditional language definitions with se-
mantic properties that advanced tools will be able to validate through checks ranging
from simple conformance checking involving name mapping, through simulations, to
model-checking and automated proofs, will make modeling more meaningful than it has
been in the context of software engineering. The systems modeling community has a
longer tradition of associating semantics to languages [26] but even for this community
the use of user-defined semantics represented with ontological types is a novel concept.

We support the view taken by Vangheluwe et al. that tackling the challenges in-
volved in modeling complex systems, such as cyber-physical systems [15], requires
the use of multiple languages/formalisms and the incorporation of semantics [31,13].
Introducing semantic properties, validating them, and demanding their preservation in
modeling transformations will be a crucial tool to master the complexity of modeling
and generating contemporary systems.

In this paper we have not attempted to identify the optimal architecture for sup-
porting multiple languages along with a semantic perspective on the UoD. However,
we hope that our clarification of the distinction between ontological classification and
linguistic classification will contribute towards identifying useful roles for ontological
classification in the context of classic language engineering. It is in this light that we
emphasize there are no grounds for the assumption that claiming a difference between
ontological and linguistic classification creates more problems than it solves. On the
contrary, we believe ontological classification should be given more consideration in
classic language engineering than it has been given to date.
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