AR
I
)
UNIVERSIDAD AUTONOMA
| DEMADRID |

Biblos - & arcnivol

Repositorio Institucional de la Universidad Autbnoma de Madrid

https://repositorio.uam.es

Esta es la version de autor de la comunicacion de congreso publicada en:
This is an author produced version of a paper published in:

Modelling Foundations and Applications: 12th European Conference, ECMFA
2016, Held as Part of STAF 2016, Vienna, Austria, July 6-7, 2016, Proceedings.
Lecture Notes in Computer Science, Volumen 9764. Springer, 2016. 101 - 117

DOI: http://dx.doi.org/10.1007/978-3-319-42061-5 7

Copyright: © 2016 Springer International Publishing Switzerland

El acceso a la version del editor puede requerir la suscripcién del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/978-3-319-42061-5_7

Example-based generation of graphical
modelling environments

Jesus J. Lépez-Fernandez, Antonio Garmendia, Esther Guerra, Juan de Lara

Universidad Auténoma de Madrid (Spain)

Abstract. Domain-Specific Languages (DSLs) present numerous bene-
fits like powerful domain-specific primitives, an intuitive syntax for do-
main experts, and the possibility of advanced code generation for narrow
domains. While a graphical syntax is sometimes desired for a DSL, con-
structing graphical modelling environments is a costly and highly tech-
nical task. This relegates domain experts to play a passive role in their
development and hinders a wider adoption of graphical DSLs.
Targeting a simpler DSL construction process, we propose an example-
based technique for the automatic generation of modelling environments
for graphical DSLs. This way, starting from examples of the DSL likely
provided by domain experts using drawing tools like yED, our system
is able to synthesize a graphical modelling environment that mimics the
syntax of the provided examples. This includes a meta-model for the
abstract syntax of the DSL, and a graphical concrete syntax support-
ing spatial relationships like containment or attachment. The system is
implemented as an Eclipse plugin, and we demonstrate its usage on a
running example in the home networking domain.

Keywords: Domain-Specific Modelling Languages, Graphical Modelling
Environments, Example-Based Meta-Modelling, Flexible Modelling.

1 Introduction

Model-Driven Engineering (MDE) is founded on the use of models to describe
the systems to be built. Often, these models are defined using Domain-Specific
Languages (DSLs) tailored to a particular field [7]. Hence, the need to create
DSLs and their associated modelling environments is recurring in MDE projects.
The concrete syntax of a DSL may be graphical or textual, though in this
paper we focus on graphical DSLs [10]. Many tools have emerged along the years
to build environments for graphical DSLs [3,5,6,10,11,17]. However, building
such environments still remains a technical, complex and time-consuming task.
For example, building a graphical editor with Graphiti [5] requires manual pro-
gramming based on a large Java API. In the case of GMF [6] and Sirius [17],
it is necessary to describe the different aspects of the editor by building one or
more models. These models may become very detailed, large and hard to build
and maintain for non-experts — especially for DSLs beyond toy examples — and
frequently they must be constructed using unhandy tree-based editors.

Apart from the technical difficulties, a salient issue with most graphical lan-
guage workbenches is the need to construct a meta-model upfront, and to de-
scribe the features of the concrete syntax and the modelling environment using a
technical language or notation. This hinders the active participation of domain
experts in the DSL construction process, who might find more familiar work-
ing with examples than with meta-models [1,12] and might lack the technical
knowledge to define complex environment specifications. However, the active in-
volvement of domain experts is crucial for the success of the DSL to be built [9].

To avoid these difficulties, we propose a novel technique for the automatic

generation of graphical modelling environments starting from examples of the
DSL. Hence, instead of building a meta-model first and describing its concrete
syntax at the meta-model level, our proposal is to collect examples built by
domain experts using drawing tools like Powerpoint, Dia or yED. Our framework
processes the provided examples to induce a meta-model by using the techniques
presented in [12], and it also extracts a description of the graphical concrete
syntax that includes graphical forms for classes (svg files), edge styles, and spatial
relations like containment or attachment. This information is used to synthesize
a graphical modelling environment that mimics the graphical syntax used in the
examples, but in addition, it enforces the well-formedness rules of the DSL and
enables the creation of models (in contrast to drawings) that can be manipulated
using MDE technology (e.g., transformations and code generators). As a result, a
graphical DSL environment is generated with no need to code or create complex
technical specifications. Our proposal is backed by a working prototype, available
as an Eclipse plugin at http://miso.es/tools/metaBUP.html.
Paper organization. Section 2 presents an overview of our approach and a
running example. Section 3 introduces example-based meta-modelling. Section 4
shows our approach to extract concrete syntax information from graphical exam-
ples. Section 5 describes the synthesis of graphical modelling environments from
the extracted information. Section 6 presents tool support. Finally, Section 7
discusses related research and Section 8 concludes the paper.

2 Overview and running example

Fig. 1 outlines our process for the example-based generation of graphical mod-
elling environments. It involves two roles: the Domain FExpert, who provides
graphical examples and ultimately validates the generated environment, and the
Modelling Expert, who monitors the meta-model induction process from which
the desired DSL environment is derived.

The core part of our process, gray-shaded in Fig. 1, is iterative. Here, the
domain expert provides input examples made with tools like yED, portraying
how models should look like (label 1). These examples may represent complete
models, or they may focus on a particular aspect of interest and therefore be
partial, in which case we call them fragments. Then, the examples are auto-
matically parsed into models, which are more amenable to manipulation (label
2). The parsed models are represented textually, making explicit the existing

2.
Domain Expert

Update meta- 4
model according
to revised
fragment

Draw
fragment

v/
ré Modelling Expert

@ Automatic activity

Revise and 3
annotate
fragment

Parse 2
fragment

Editor 7
validation

Fig. 1: Bottom-up graphical DSL development process.

objects, attributes and relations in the examples, annotated with information
regarding their graphical rendering (e.g., spatial relationships between objects
or line styles). The modelling expert can edit this textual representation (label
3) to set more appropriate names to the derived relations, or to trigger refactor-
ings in the meta-model induction process which takes place next (label 4). Thus,
an iteration step finishes when the meta-model under construction is evolved to
accept the revised fragment.

After processing all provided examples, the modelling expert can export the
induced meta-model to a suitable format (Ecore in our current implementation,
label 5), and invoke our editor generator to obtain a fully operating editor mim-
icking the concrete syntax of the examples (label 6). Moreover, the examples are
migrated into models and can be edited and visualized in the generated editor.
The domain expert can validate the editor (label 7), perhaps based on the con-
verted examples, and if necessary, he can refine the DSL by providing further
examples and re-generating the editor.

2.1 Running example

As a running example, we develop a DSL in the home networking domain. In
this DSL, we would like to represent the contracts that internet service providers
(ISPs) hold with customers, the possible configurations of home networks, and
their connection with the ISP infrastructure. Customer homes are connected via
cable modems to the ISP network. Typically, each home has a (normally Wi-Fi-
enabled) router to which the landline phone is connected, and with a number
of Ethernet cable ports. Wi-Fi networks are password protected and work in a
frequency range. Moreover, each home may have both cabled (e.g., PCs, printers
or laptops) and wireless devices (e.g., smartphones, tablets or laptops).

Using our approach, domain experts provide example fragments that illus-
trate interesting network configurations and depict the desired graphical repre-
sentation for them. As an example, Fig. 2 shows one fragment built with yED!,
representing the connection between some customer homes and the ISP through
cable modems. The elements in the drawing define some properties, like the ip-
Base of cable modems, the name of the home owner, the tier and location of the

! https://wuw.yworks.com/products/yed

name = lemon

Legend

location = MAD

location = BCN

tier=3 ® tier =3 @ Internet Service Provider
——

Q ISP Network

—a—

)
Q Home

Q‘/ Cable modem

ipBasp '
&

name = Laura Marling Q
name = Elliott Smith
ipBase = 251.12.210.56

ipBase = 251.112.210.48

name = Damien Jurado

Fig. 2: Fragment showing a connection between customer homes and an ISP.

ISP network, and the name of the ISP. The legend to the right assigns a name
to every picture used in the drawing.

3 Example-based meta-modelling

In [12], we introduced a bottom-up meta-modelling technique that enables the
automatic induction of a meta-model starting from sketches?, built using draw-
ing tools. In order to facilitate the meta-model induction process, sketches are
complemented by a legend that assigns a name to each different symbol in the
drawing, as shown in Fig. 2. Such names are used as identifiers for the induced
meta-model classes.

The meta-model induction process starts by parsing the provided fragment
into a textual internal representation that is easier to manipulate by the mod-
elling expert. The fragment, once revised by the modelling expert, is fed into our
system. This may produce an update of the current version of the meta-model
so that it “accepts” the provided fragment. For example, if a fragment contains
objects of an unknown type, this type is incorporated into the meta-model. Sim-
ilarly, if an object has new features not present in its type, then its meta-class is
extended with these new features. Fragments have an open-world semantics: they
only convey the relevant information for the scenario, and may omit additional
information that will be given in further sketches. As explained in Section 2,
examples are a special kind of fragments used to represent complete models, and
they have a closed-world semantics.

For instance, Listing 1 shows the textual model obtained from parsing the
fragment in Fig. 2. Every object (e.g., hl in line 2) receives a type as indicated
in the legend (e.g., Home), and may contain slots (e.g., name in line 3) and links
(e.g., modem in line 6) according to the original fragment.

2 We call these examples sketches to distinguish them from models conformant to a
meta-model, though they are not hand-drawn but made with diagramming tools.

1 fragment fragmentl { 24 cml : CableModem {
2 h1l : Home { 25 attr ipBase = "251.12.211.6"
3 attr name = "Elliott Smith” 26 ref isp = ispnl
4 @overlapping 27
5 @composition 28 cm2 : CableModem {
6 ref modem = cm3 29 attr ipBase = "251.12.210.56"
7 30 ref isp = ispnl
8 ispl : InternetServiceProvider { 31
9 attr name = "lemon” 32 cm3 : CableModem {
10 ref infrastructure = ispnl, ispn2 33 attr ipBase = "251.12.210.48"
11} 34 ref isp = ispn2
12 h2: Home { 35
13 attr name = "Damien Jurado” 36 ispnl : ISPNetwork {
14 @overlapping 37 attr tier = 3
15 @composition 38 attr location = "MAD”
16 ref modem = cm2 39
17} 40 ispn2 : ISPNetwork {
18 h3: Home { 41 attr tier = 3
19 attr name = "Laura Marling” 42 attr location = "BCN"
20 Q@overlapping 43
21 @composition 44 }
22 ref modem = cml
23}

Listing 1: Textual representation of the fragment in Fig. 2

Fig. 3 shows the meta-model induced from [Tniernetservice oo
this fragment. As this is the first fragment, the Provider name - Stng
meta-model was initially empty, and so four new [name:String
classes are added, each containing the neces- *J/‘"f'a“'““”re 1$m°dem
sary attributes for the slots in the class’ objects. ISPNetwork ép CableModem
We use simple heuristics to type primitive at- It:Ji;jci?rE:String ipBase : String

tributes, like setting the type to int when all slots
within a fragment are compatible with that type Fig.3: Meta-model induced
(e.g., tier in the example). If a subsequent frag- from the fragment in Listing 1.
ment invalidates such an assumption, then the

type will be changed to String. References are assigned cardinality * as soon as
an object points to two or more objects using edges with the same style (e.g.,
infrastructure). We also detect spatial relations between objects, like overlapping
and containment, in which case compositions are created in the meta-model. In
the example, the system detects overlapping between each CableModem object
and a Home object.

Objects, slots and links in the textual fragment can be annotated manually
by the modelling expert. Such annotations can provide design or domain infor-
mation accounting for well-formedness constraints of the DSL (see [12]), or they
can refer to concrete syntax details. In addition, some concrete syntax annota-
tions are automatically produced by the fragment importer. In Listing 1, the
importer added annotation @overlapping in lines 4, 14, and 20, to convey the fact
that Home and CableModel objects overlap each other. We will detail the use of
this kind of annotations in Section 4. In [12], we reported on another use of anno-
tations, as a means to encode meta-model integrity constraints, like @composition
in lines 5, 15, and 21. As we will see in Section 4, the @composition annotation
was heuristically added due to the existence of overlapping.

. fragment: + metamodel:
SterEIement Relation @containment : @containment
color : Strin @over\app\ng . @overlapping
width : Imegger @adjacencyl: @adjacency
/\ link 1 reference
Node Edge SpatialRelation
name : String 7\
height : Integer lineType : LineType
transparent : Boolean srcDecoration : ArrowType
fileLocation : String tarDecoration : ArrowType . . .
oy imeger w» | Containment | | Overlapping | | Adjacency |
v v v v v v alignment |0..* side[0..
fragment: :melamode\: fragment: :metamodel: <<enum>>
@style | @style @style | @style P
object | metaclass link | reference Position

top
bottom
right
left

Fig. 4: Graphical properties inferable from sketches, and corresponding annotations.

The meta-model changes after each fragment is processed may trigger recom-
mendations (refactorings). For example, if two classes have similarities (common
attributes or references pointing to the same class) the system suggests applying
the extract superclass refactoring, to factor out the common information [12].

Our technique is incremental, as new examples and fragments can be provided
to make the meta-model evolve. Moreover, it fosters the active participation of
domain experts in the meta-model construction process, as they can contribute
with fragments (sketches) which are no longer passive documentation, but they
are used to derive a meta-model. Up to now, our technique has been only able
to derive the abstract syntax of the DSL [12]. In the following, we elaborate on
the main contribution of this paper, which is the extension of our approach to
derive a concrete syntax for the DSL (Section 4) and to synthesize a graphical
modelling environment that emulates the syntax of the fragments (Section 5).

4 Example-based concrete syntax inference

We take advantage from the graphical information already encoded in sketches
for both minimising the job of the modelling expert and deriving a concrete
syntax close to the domain expert’s conception.

Fig. 4 shows the graphical properties that we extract from sketches and use
to derive the concrete syntax of the DSL. Some are explicit features from the
icons in the drawing, like their colour or size. Other properties are implicit rela-
tionships concerning the relative position of icons, like overlapping or adjacency,
and are derived automatically by studying the size and location of each icon. For
adjacency, we check both the direction (e.g., two objects adjacent left-to-right)
and if in addition they are aligned and how (e.g., at the bottom).

Graphical properties are encoded as annotations of the corresponding ob-
jects and links in the textual fragment. Then, these annotations are transferred
to the appropriate meta-model classes and references when the fragment is pro-
cessed. Fig. 4 shows the correspondence between the graphical properties and
the elements they can annotate.

Legend
v,
. 7
Legend
-~
* e Cable modem Home.svg
name = myWifi
password = myPw CableModem.svg
g Router
™\ Router.svg
“ -§- g Port Port.svg
. FixedPhone.svg
| Q0 .. o
| porto =1 portNo = 2 ﬂ Fixed phone WifiNetwork.svg
R
ipBase =251.12.211.16 2 Wifi network

name = Phil Ochs
phoneNo = 5550225

Fig. 5: Fragment with spatial features (left). Content of the legend folder (right).

Next, we explain how we extract and manipulate this graphical information.

4.1 Detection of icons and line styles

We retrieve each icon employed in the provided sketches, since this is the most
relevant aspect of the appearance that the domain expert expects from the final
DSL. Since the drawing tools we work with demand the definition and usage
of palettes with all available icons, technically, we provide a directory where we
store a copy of the files containing the icons as they are added to the palette.
These files are employed both in the serialization of fragments and in the gener-
ation of the concrete syntax, and are named according to the icon they contain.
For instance, Fig. 5 shows to the right the Legend folder that contains the svg
files used to represent each domain object in the fragment to its left.

Additionally, we detect and classify the style of edges in sketches. This feature
can be deactivated if the edge style is irrelevant for the domain. If active, we
identify and record the colour, line width, style (e.g., dotted) and source and
target decorations of edges. As an example, Fig. 5 contains an edge linking a
Router and a Cable modem. When the fragment is imported, the link is annotated
with the identified style (lines 26-28 in Listing 2).

Note that the name inferred for this link was not modem, but the one struck
out (see lines 29-30 in Listing 2). Because we allow the modelling expert to
edit the text fragments, he has replaced the inferred name with one closer to
the domain. What is interesting about this operation is that, from this moment
on, each time a link with the same style between a router and a cable modem is
imported, it will be automatically named modem. If the modelling expert renames
the feature in the future, he will be offered two options: either to replace the
previous name modem with the new one, or creating a new reference in class
Router which would coexist with the feature modem.

The annotations with the graphical information of links will be transferred to
the corresponding meta-model references, and eventually, to the concrete syntax
generator. On the contrary, meta-classes do not carry any graphical information
with them, since we store their exact representation in the legend folder.

1 fragment fragment2 { 23 @adjacency(side = bottom)

2 Home_1 : Home { 24 ref ports = Port_1, Port_2

3 attr phoneNo = 5550225 25 @composition

4 attr name = " Phil Ochs” 26 @style (color = "#000000", width = 3,
5 27 line = dashed, source = none,
6 @overlapping 28 target = crows—foot—many)
7 @composition 29 ref - =3 = =

8 ref modem = CableModem_1 30 modem = CableModem_1

9 31

10 Q@containment 32 FixedPhone_l : FixedPhone { }

11 @composition 33 WifiNetwork_1 : WifiNetwork {

12 ref electronicDevices = Router_1 34 attr name = "myWifi"

13 35 attr password = " myPw"

14 @containment 36

15 Q@composition 37 Port_1: Port { attr portNo = 2 }
16 ref phones = FixedPhone_1 38 Port2 : Port { attr portNo =1 }
17 39 CableModem_1 : CableModem {

18 @containment 40 attr ipBase = "251.12.211.16"

19 @composition a1
20 ref wifiNetworks = WifiNetwork_1 42 }

22 Router_1 : Router {

Listing 2: Textual representation of the fragment in Fig. 5

4.2 Detection of spatial relationships

Sometimes, spatial relationships between graphical objects have a meaning in
the domain and need to be modelled. It is even likely that the domain expert
is unaware of whether layout implies domain requirements. We automatically
detect spatial relationships in sketches, and leave the modelling expert to keep
or discard them by editing the textual fragments. We currently support three
kinds of spatial relationships:

— Containment: a graphical object is within the bounds of another.

— Adjacency: two graphical objects are joined or very close. The maximum dis-
tance with which adjacency is to be considered is user-defined (0 by default).
Two optional properties are likewise detected: the side(s) from which objects
are attached to each other, and alignment, a special type of adjacency.

— Owerlapping: two graphical objects are superimposed (but not contained).

Detecting one of these relationships implies adding a reference to the meta-
model. In the case of containment, the reference goes from the container to the
containee. For adjacency and overlapping, we use this heuristic: if an object o
overlaps (or is adjacent) to more than one object of the same kind, the reference
stems from o’s class; otherwise, the reference stems from the class of the bigger
object. The rationale is that, frequently, the different parts of bigger objects are
represented as smaller affixed elements (e.g., a component with affixed ports).

The fragment in Fig. 5 illustrates all supported spatial relationships, which
are automatically detected when the fragment is imported (see Listing 2). On one
hand, the Home contains a Router, a Fixed Phone and a Wifi Network in the sketch;
hence, in the textual representation, the Home object has three links annotated
as @containment (lines 12, 16 and 20). The Home overlaps with a Cable Modem
in the sketch, being the Home icon bigger; hence, the Home object is added a

InternetService @ Home E]

Provider . phoneNo:int |@—— = -
name: String ¢ name: String __ |@p————

infrastructure l* modem | 1 1 electronicDevices 1 phones 1} wifiNetworks
dem X .
ISPNetwork CableModem 31—|° - Router FixedPhone WifiNetwork
O] = | I | "
tier: int ipBase : String name: String
location: String o liggeooes | ey password: String
ltisp Port
portNo: int

Fig. 6: Updated meta-model after processing the fragment of Listing 2.

link annotated as @overlapping (line 8). Finally, the Router has two adjacent Ports
to the bottom side; since there are multiple ports, the Router is added a link
annotated as @adjacency (line 24). The side parameter of this annotation could
be removed in case the side of the adjacency is irrelevant to the domain.

In addition to creating explicit links for the detected spatial relationships,
our importer heuristically adds @composition annotations to the created links (see
lines 7, 11, 15, 19 and 25). This helps in organizing and realising only a sufficient
set of spatial relationships. For example, both Ports are contained in the Home,
but this relation is not made explicit because they are already adjacent to the
Router, which is inside the Home. In this case, we use the @composition annotation
of the abstract syntax to infer that they are indirectly contained in Home objects.

Fig. 6 shows the resulting meta-model after processing this second fragment,
including the annotations for style properties and spatial relationships. The new
features with respect to Fig. 3 appear gray-shaded.

5 Generation of graphical modelling environments

Our approach to synthesize the graphical editor proceeds in two steps: we first
convert the information gathered from the sketches into a technology-neutral
graphical representation, and then, this representation is translated into a tech-
nology-specific editor specification. We currently target Sirius [17], but other
technologies like EuGENia [11] could be easily targeted as well. Fig. 7 outlines
this process, where three transformations take place: one generates the meta-
model with the abstract syntax of the DSL, another takes care of the concrete
syntax and synthesizes the modelling environment, and the last one converts
the provided sketches into models conformant to the induced meta-model. Next,
we describe the main features of the GraphicRepresentation neutral meta-model
and how it is used to produce a modelling environment for the DSL.

Fig. 8 shows the meta-model we have developed to represent graphical con-
crete syntaxes. It is an extended version of the one presented in [4], where we have
added further features like layers, spatial relationships, reutilization through
node inheritance, abstract nodes, and support for figures and edge styles.

Thus, we convert the concrete syntax information induced from sketches into
this intermediate meta-model to be independent from the target technology, but

10

'” |2§(Sirius —
concrete legend GraphicRepr) Sirius
syntax info | [(images) model ransf. editor model
(.odesign)
Y) T
meta-model meta-model H
(-mbup) (.ecore)
! oy
II example-1 example-1 II example-1
(:mbupf) (-xmi) (.aird)
fragments,examples EMF models ‘graphical models

Fig. 7: Technical process: generating a (Sirius) graphical editor from examples.

0.7 | - :
H Layer O fyer 8 GraphlcRepresentatlonl
= l]

[0..1] shape

{E DefauItLayer] [8 AddmonaILayerl p[0-1] elements y E Shape
t 1 I] o —__

% DiagramElement

[0..1] palettedescription

E PaletteDescription

[0.*] parents

{E EIIipse] [E Rectangle]
1]

8 Edge | g Node | L C
| = isAbstract : EBoolean = false I 8 Figure 8 Diamond
—

E EdgeStyle [0..1] nodeelement
FEES & NodeElement & LabelAttribute
—— [0.7] labelattribute ———————————

[0.*] spatialrelation

H SpatialRelation

8 Overlapping] { B Containment] [EI Adjacency
C] C J)

Fig. 8: Excerpt of the neutral GraphicRepresentation meta-model.

also, to be able to refine this information, e.g., by specifying palette information,
organize elements in layers, or select labels for nodes. Graphical elements are
organized into layers (abstract class Layer). A graphical representation has one
DefaultLayer where all graphical elements belong by default, and zero or more
AdditionalLayers. Layers contain graphical elements, which can be either Node-
like or Edge-like. In both cases, they hold a PaletteDescription with information
on how the element is to be shown in the palette. Nodes may be represented
as geometrical shapes (Rectangle, Ellipse, etc.) or as image figures (class Figure).
They can also display a label either inside or outside the node, being possible
to configure its font style (class LabelAttribute). In addition, some nodes may
need to be displayed in a relative position with respect to other nodes in the
diagram, like being adjacent to (class Adjacency) or being contained in (class
Containment) other nodes. Edges can specify a line style like solid, dash, dot or
dash-dot (class EdgeStyle). Finally, we enable the reuse of graphical properties by
means of relation parents and attribute isAbstract in class Node, so that graphical
properties defined for a node are inherited by its children nodes.

The generation of the modelling environment requires establishing a corre-
spondence between the abstract syntax meta-model of the DSL and the concrete

11

syntax meta-model in Fig. 8. Node-like elements have a direct correspondence
(e.g., meta-classes are mapped to a Node and a Shape). References are mapped
into Edges, while their concrete syntax annotations are mapped into an EdgeStyle.
Both Nodes and Edges keep a cross-reference to the corresponding class or refer-
ence in the abstract syntax meta-model (omitted in the figure). In addition, if the
references are annotated with @containment, @adjacency or @overlapping, they get
assigned a Containment, Adjacency or Overlapping object respectively. All created
elements are included in the default layer and receive a PaletteDescription.

To generate the modelling environment, we first synthesize an ecore meta-
model with the definition of the DSL abstract syntax, and then, we transform the
obtained GraphicRepresentation model into a Sirius model (*.odesign) describing
the graphical syntax and its correspondence to the ecore meta-model. This latter
transformation is implemented using ATL.

6 Tool support

The architecture of our solution encompasses the drawing tool yED, and two
Eclipse plug-ins: metaBup [12] and EMF Splitter [4]. While metaBup supports
the whole bottom-up abstract syntax construction process, we provide a specific
metaBup exporter that wraps the resulting meta-model and passes it to EMF
Splitter, which produces a fully operational graphical modelling environment
from it. In the following, we explain how these two tools are integrated to support
the presented approach, as well as the extensibility mechanisms of the tools.

6.1 Tool support for the generation process

Domain experts can create sketches with yED
as shown in Fig. 9. Once an initial set of ex-

a8 a8 mmEeHE T e

®eQn

amples is ready, the modelling expert creates a QunT
. . 1] s sps TO=E
new metaBup project. This will initially con- Freo

tain a blank meta-model file with mbup exten-
sion, and empty fragments and legend folders.
The yED sketches are imported one by one,
and converted into text fragment models in
the shell console of metaBup. Once parsed, the e s
modelling expert can modify the fragments
if needed. The revised fragments are fed to
the meta-model induction process, which may
trigger refactorings on the meta-model. Fig. 10 shows the tool once the sketch
of Fig. 9 has been parsed, and the current meta-model (accessible on the second
tab of the editor). Technically, we need to copy the images used in the yED
palette (right side of Fig. 9) into our legend folder.

After each iteration (i.e., addition of a fragment), a text version of the draw-
ing is stored in the fragments folder of the project. These fragments are validated

Fig.9: Sketch drawn in yED.

12

[# Packag.. 1 Project = 8 | B *Metamodel interactive editor 3 =

> o

g v ©shell fragment4 fragment yed sketch {

=]

v (% TelcomReference & FixedPhone_1 : FizedPhone {

=, JRE System Library [jrel.2.0.45]

A, B tibaris P
v B sic

1 B TelcomReference E|
1 TelcomReferenceimpl |
1 B TelcomReference.util
3 TelcomReferencealidation /
N e e o e] .
i T = Tragments Y o \ X .
2/ fragment1.mbupf ® \ ‘ [Captop]
El B ﬁazmem_zmbu:f 1 s [FixedPhone] “. M_‘N‘;\&(&, 0 . e
5] fragment3.mbupf | | \ | MobilePhone]

- _fragment,mbupf,, \

\
S e 0.1\
Eg\egend ™ "‘: \ J:.mekw.\:

B TelcomReference.mbup \

\ 3

& TelmmREfEfE"(E-mm-Eme@ InternetServiceProvide: \ ifiNetwork
[_TelcomRefersncenm.genmodel [rame - StrngType 0.1 \ e StrgType 6

£~ T2 TelcomReference sirius v |k

(& src

decronicDevices 0,-1)_o[EjactronicDavice

CabledDevice

/ .
erve

/
/
e

IDesktopPC|

infrastructure {0, -1} \
1 = IRE System Library [r<1.50.45] |
i, Plug-in Dependencies
| =\ Referenced Libraries]
|~ & dascription
B wnodes.gn
I > engame
£~ 5 models \
1 2 fragment].ext
[fragmentz.ext |
1 E 2| fragment3.ext |

source = none,

target = standard) ref connection = Hort 3

@general (name = "ElectronicDevice")
Laptop_1 : Laptop {
)’ & @ style (color = "#000000",
1 dg} pluginaml width = 3, v
[E]

representations.aird < >
N e m o o =
" > | Shell | Metamodel

1Y & Fareitey
3 build properties

Fig.10: metaBup tool: (1) Legend folder, (2) Fragments folder, (3) Parsed sketch in
textual format, (4) Current version of meta-model, (5) Generated Ecore meta-model,
(6) Java code generated from Ecore meta-model, (7) Generated Sirius project, (8) Sirius
editor model, (9) Models transformed from the initial sketches.

upon each meta-model change, so that they will be error-flagged if they become
inconsistent after a meta-model modification.

After processing all sketches, the modelling expert can produce the Sirius-
based editor by just clicking on a button. In this way, first some necessary EMF
artefacts are automatically generated, like the ecore and genmodel files (label 5
in Fig. 10), and the generated meta-model Java classes (label 6). These resources
contain the equivalent representation to our working meta-model in EMF. The
modelling expert is prompted to type a file extension for the models built with
the new editor (“ext” in our example).

Then, a new Sirius Viewpoint Specification project is automatically created
by internally using EMF Splitter (label 7 in Fig. 10). This created project in-
cludes two key elements: (i) an odesign file, the core resource of a Sirius editor,
describing the DSL concrete syntax and its mapping to the DSL abstract syn-
tax, and (ii) a folder named models containing models equivalent to those in the
fragments folder, but now in zmi format. These files actually serve as validation
units, since they are expected to be represented in the new editor similarly to
the original sketches. The generated Sirius project can then be run, and Fig. 11
shows the resulting editor with one model coming from an initial sketch.

Altogether, for the running example, we synthesized a graphical DSL using
4 fragments, with 13 object types, 4 edge styles and using 3 spatial relationships
(containment, overlapping and adjacency, but not alignment). The system au-

13

[FS Modeiing - ionsan ‘DDTeleComStructure - Eclipse m«..._gl@m-_-i'
File Edit Diagram Navigate Search Project Run Window Help
- L R0 O =02 0 S H R STIR AR Ch devh g Quick Access | 5% | [y Resource ([Modeling | &) Java < Sirius
& new DDTeleComStructure &3 = 0
SvR -t @I wRX% B A 8|S I8 £ 3% Palette b

sAMReaac-=-
555-3141516 Pilar Pinilla h&QD

(= DefaultPalette
4 Create InternetServiceProvider
4 Create CableModem
4+ Create Router
4 Create Home
4 Create EthPort |
4 Create FixedPhone
4 Create WifiNetwork
4 Create Laptop

Lemon

4 Create Smartphone
<4 Create DesktopPC

4 Create ISPNetwork

\ Create Link customers

\ IdCreationinternetServiceProvideriSPNetwork
\\ Create Link provider

3 MAD

!P— \Id(rea!xen(ableMademlSPNe(wovk
\ Create modem
\ Create fixedphone
\ Create wifinetwork n
@ \\ Create CableDevice to EthPort
\ Create WifiDevice ti WifiNetwork
128450 .
] Properties 52 B ¥ = 8 8 Outine 5@ e =0
4 ISP Network 3 . |
Appearance | Property Value S
Semantic 4 ISP Network 3 E
5 Location S MAD
iyle Tier i3

Fig. 11: Sirius graphical modelling environment for the running example.

tomatically induced a meta-model with 16 classes, 16 attributes, 13 references
and 8 inheritance relationships. Finally, the generated Sirius odesign model con-
tains 178 objects. The details of this case study, and some other examples, are
available at http://miso.es/tools/metaBUP.html.

6.2 Extension mechanisms

Our tools can be extended (via Eclipse extension points) in different parts of the
process, as shown in Fig. 12. First, there is the possibility to contribute new frag-
ment importers (label 7). For this purpose, we provide a platform-independent
“pivot” meta-model to represent sketch information [12], from which we produce
the internal textual representation shown in the paper. We currently have im-
porters from Dia and yED, but other drawing tools could be supported as well.
Additionally, we provide a meta-model for modelling the graphical properties
explained in Section 4 (see Fig. 4). As spatial relationships between objects are
automatically inferred from fragments, it is necessary to save object locations
(attributes width, height, x and y in Fig. 4).

New meta-model refactorings can be added to metaBup (label 2 in Fig. 12).
As the meta-model grows, the modelling expert is suggested suitable refactorings
to be performed on the meta-model. We natively cover basic rules like pluralizing
multi-target reference names or generalizing common features to abstract classes,
but also give the chance to create custom meta-model modifications [12]. The

14

Z...DIA Ecatalo ue L [EMF T,
$ 94 Ecore e EuGENia

\Splitter ! (sirius)
Sketching Meta-model - - B Editor
platform refactorings Exporter Platform

t T Erare MM \
! graph repr | - Editor L. N
induction I _figures ___ generation 7 1]
Modelling
metaBUP EMF Splitter environment

Fig.12: Extension points: (1) Sketching platform, (2) Meta-model refactorings, (3)
Exporter, (4) Editor platform.

tool can also be extended with meta-model exporters (label 3), like the one we
have presented for EMF Splitter. Finally, EMF Splitter currently targets the
generation of Sirius-based editors, but other technologies like EuGENia could
also be targeted (label 4 in the figure).

7 Related work

While MDE is founded on the ability to process models with a precisely defined
syntax, some authors have recognised the need for more flexible and informal
ways of modelling. This is useful in the early phases of system design [14, 16, 18],
or as a means to promote an active role of domain experts in DSL development [2,
19], as we advocate in this paper. Next, we review works aiming at both goals.

There are two orthogonal design choices enabling flexible modelling in DSL
development: (i) the use of examples to drive the construction process, and (ii)
the explicit generation of a meta-model and a modelling tool different from the
drawing tool used to build the initial examples.

Regarding the first design choice, “by-demonstration” techniques have been
applied to several MDE artefacts, like model transformations [8], but their use
is not so common to describe graphical modelling environments. The closest
work to ours is [2], which describes a system atop Microsoft Visio to derive
DSLs by demonstration. Given a single example, the system derives the concrete
syntax from the icons in the palette, and some abstract syntax constraints, e.g.,
concerning the connectivity of elements. This information is recorded and used
within Microsoft Visio. Instead, we derive an explicit meta-model, infer spatial
relationships like containment and overlapping, and generate a modelling tool.
Moreover, our induced meta-model supports modelling concepts like abstract
classes, inheritance, compositions and attributes, which are not found in [2].

The approach in [19] uses yED to draw examples of the DSL. Types are
assigned to elements on the basis of labels, and some predefined functions check
for shape overlapping, colour or proximity. All modelling is performed within
yED, and no meta-model or dedicated modelling environment are generated.

We believe that creating a meta-model and a modelling environment on top
of a meta-modelling framework has some benefits. First, it guides the user in
filling slot values, which otherwise should be done via tags in a diagramming tool

15

like Visio. Moreover, slots and links have a type, which enables type-checking.
Second, the created models can be manipulated by standard model management
languages for model transformation or code generation.

Some tools for DSL development are based on generating an external mod-
elling tool. For instance, EuGENia live [15] is a tool for designing graphical DSLs
that runs on the browser. The tool supports on-the-fly meta-model editing while
the user is editing a sample model and its concrete syntax. The tool can export
an Ecore meta-model enriched with concrete syntax annotations, which can be
used to generate an Eclipse GMF-based environment.

Finally, some modelling tools promote flexibility in the early phases of sys-
tem design by offering sketching capabilities similar to pen-and-paper drawing.
For instance, SKETCH [16] provides an API to enable sketch-based editing on
Eclipse. Calico [14] is a sketching tool designed for electronic whiteboards, where
the sketched elements can be scrapped and reused in other parts of the diagrams.
FlexiSketch [18] derives simple meta-models from sketches, but the extracted
meta-model does not support conceptual modelling elements like class inheri-
tance, abstract classes or different association types (e.g., compositions).

Altogether, our approach is novel as it enables the creation of graphical DSL
editors based on drawings produced by domain experts, generating a meta-model
and a dedicated modelling environment. This approach helps in transitioning
from informal modelling in a diagrammatic tool, to formal modelling in a mod-
elling tool, where models are amenable to automated manipulation.

8 Conclusions and future work

This paper has presented our approach to the example-based generation of
graphical modelling environments. In our approach, domain experts contribute
with sketches built with diagramming tools, and our system induces a meta-
model and a graphical modelling environment, currently based on Sirius. The
paper has shown the advantages of the approach, like: (i) there is no need to
code or create editor specifications; (ii) it lowers the barrier to build graphi-
cal environments, which is a highly technical task requiring expert knowledge;
(iii) it bridges the gap between drawing tools (likely used by domain experts
in early phases of the development) and modelling tools (useful for automated
model manipulation); and (iv) drawings can be transformed into models and be
manipulated using MDE technology (transformations and code generators).

In the future, we plan to perform a user study to evaluate the construction
process and the generated editor. To facilitate the validation of the final editor by
the domain experts, we plan to integrate our mmXtens language [13], which is able
to generate “interesting” example models using constraint solving. We also plan
to improve our support for the editor evolution. For instance, a common scenario
might be the manual modification of the Sirius editor model. To avoid overriding
these manual changes, we may employ techniques similar to [11], where manual
changes are described as a program that is reapplied when re-generation occurs.

16

Acknowledgements. Work supported by the Spanish Ministry of Economy
and Competitivity (TIN2014-52129-R), the Madrid Region (S2013/ICE-3006),
and the EU Commission (FP7-ICT-2013-10, #611125).

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

K. Bak, D. Zayan, K. Czarnecki, M. Antkiewicz, Z. Diskin, A. Wasowski, and
D. Rayside. Example-driven modeling: model = abstractions + examples. In
ICSE, pages 1273-1276. IEEE / ACM, 2013.

H. Cho, J. G. Gray, and E. Syriani. Creating visual domain-specific modeling
languages from end-user demonstration. In MiSEQICSE, pages 22-28, 2012.

J. de Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and meta-
modelling. In FASE, volume 2306 of LNCS, pages 174-188. Springer, 2002.

A. Garmendia, A. Pescador, E. Guerra, and J. de Lara. Towards the generation
of graphical modelling environments aided by patterns. In SLATE, volume 563 of
CCIS, pages 160-168. Springer, 2015.

Graphiti. https://eclipse.org/graphiti/.

R. C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley Professional, 2009.

J. Hutchinson, J. Whittle, and M. Rouncefield. Model-driven engineering practices
in industry: Social, organizational and managerial factors that lead to success or
failure. Sci. Comput. Program., 89:144-161, 2014.

G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wimmer. Model
transformation by-example: A survey of the first wave. In Conceptual Modelling
and Its Theo. Foundations, volume 7260 of LNCS, pages 197-215. Springer, 2012.
S. Kelly and R. Pohjonen. Worst practices for domain-specific modeling. IEEE
Software, 26(4):22-29, 2009.

S. Kelly and J. Tolvanen. Domain-Specific Modeling - Enabling Full Code Gener-
ation. Wiley, 2008.

D. S. Kolovos, L. M. Rose, S. bin Abid, R. F. Paige, F. A. C. Polack, and G. Bot-
terweck. Taming EMF and GMF using model transformation. In MODELS Part
I, volume 6394 of LNCS, pages 211-225. Springer, 2010.

J. J. Lépez-Fernandez, J. S. Cuadrado, E. Guerra, and J. de Lara. Example-driven
meta-model development. Software and System Modeling, 14(4):1323-1347, 2015.
J. J. Lépez-Fernandez, E. Guerra, and J. de Lara. Example-based validation of
domain-specific visual languages. In SLE, pages 101-112. ACM, 2015.

N. Mangano, A. Baker, M. Dempsey, E. O. Navarro, and A. van der Hoek. Software
design sketching with calico. In ASE, pages 23-32. ACM, 2010.

L. M. Rose, D. S. Kolovos, and R. F. Paige. Eugenia live: A flexible graphical
modelling tool. In XM, pages 15-20. ACM, 2012.

U. B. Sangiorgi and S. D. Barbosa. SKETCH: Modeling using freehand drawing
in eclipse graphical editors. In FlexiTools @ ICSE, 2010.

Sirius. https://eclipse.org/sirius/.

D. Wuest, N. Seyff, and M. Glinz. Flexisketch team: Collaborative sketching and
notation creation on the fly. In ICSFE, volume 2, pages 685-688, 2015.

A. Zolotas, D. S. Kolovos, N. D. Matragkas, and R. F. Paige. Assigning semantics
to graphical concrete syntaxes. In XM@MoDELS, volume 1239 of CEUR Workshop
Proceedings, pages 12-21. CEUR-WS.org, 2014.

