Skip to main content

Processing and Geo-visualization of Spatio-Temporal Sensor Data from Connected Automotive Electronics Systems

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2016 (ICCSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9788))

Included in the following conference series:

  • 1811 Accesses

Abstract

Connected devices, paradigms of the Internet of Things and Big Data increasingly define our everyday life. In this context, modern automobiles, which are characterized by an increase of electronic components and extensive sensor devices, potentially are becoming a new kind of mobile and anytime accessible sensors. In this context “Extended Floating Car Data” (XFCD) is a rich geocoded dataset for vehicle, traffic, and environment data, augmenting more traditional geospatial databases. This paper deals with the approach to collect and use this data from automobiles for context-aware geospatial analyses by combining the sensor parameters with a spatial and temporal component. These data concern the concept of XFCD as geo-information and needs to be made available and applicable to spatio-temporal visualization. For this approach, research already conducted should be considered and findings should be used for more in-depth research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Doctorow, C.: The Coming War on General Computation. Presented at 28C3 conference in Berlin, Germany (2011). Transcribed by Joshua Wise www.joshua@joshuawise.com. https://github.com/jwise/28c3-doctorow/blob/master/transcript.md. Accessed May 2016

  • Pfoser, D.: Floating car data. In: Shekhar, S. and Xiong, H., (eds.) Encyclopedia of Geographical Information Sciences, p. 321. Springer, New York (2008a)

    Google Scholar 

  • Lorkowski, S.: Erste Mobilitätsdienste auf Basis von “Floating Car Data”. In: Beckmann, S. et al., (eds.) Stadt, Region, Land – 4. Aachener Kolloqium “Mobilität und Stadt” (AMUS). Institut für Stadtbauwesen der RWTH, Aachen (2003)

    Google Scholar 

  • Halbritter, G. et al.: Strategien für Verkehrsinnovationen: Umsetzungsbedingungen, Verkehrstelematik, internationale Erfahrungen. edition sigma, Berlin (2008)

    Google Scholar 

  • Breitenberger, S. et al.: Extended Floating Car Data – Potenziale für die Verkehrsinformation und notwendige Durchdringungsraten. In: Rohleder, M., (eds.) Straßenverkehrstechnik, 10/2014, pp. 522–531. Kirschbaum Verlag, Bonn (2004)

    Google Scholar 

  • CiA: History of CAN technology. CAN in Automation e.V., Nuremberg (2016). http://www.can-cia.org/can-knowledge/can/can-history/. Accessed May 2016

  • McKinsey: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute, McKinsey & Company Inc., New York (2011). http://www.mckinsey.com/business-functions/business-technology/our-insights/big-data-the-next-frontier-for-innovation. Accessed May 2016

  • Schneider, S., et al.: Extended floating car data in co-operative traffic management. In: Barceló, J., Kuwahara, M. (eds.) Traffic Data Collection and its Standardization, pp. 161–170. Springer, New York (2010)

    Chapter  Google Scholar 

  • Stottan, T.: XFCD als Basistechnologie für die Mobilität 3.0 - Entstehung, Entwicklung, Zukunftsanwendungen, Marktentwicklung. In: Proff, H., et al. (eds.) Schritte in die künftige Mobilität, pp. 47–59. Springer Fachmedien, Wiesbaden (2013)

    Chapter  Google Scholar 

  • Schäffer, F.: OBD-Fahrzeugdiagnose in der Praxis. Franzis Verlag, Haar (2012)

    Google Scholar 

  • Voland, P.: Webbasierte Visualisierung von Extended Floating Car Data (XFCD) - Ein Ansatz zur raumzeitlichen Visualisierung und technischen Implementierung mit Open Source Software unter spezieller Betrachtung des Umwelt- und Verkehrsmonitoring. Master Thesis, University of Potsdam, unpublished (2014)

    Google Scholar 

  • AOBDR: android-obd-reader and obd-server, Github Repository Android OBD-II Reader Project. Paulo Pires pjpires@gmail.com (2016). https://github.com/pires/. Accessed May 2016

  • CartoDB: CartoDB Github Repository. Vizzuality Inc., New York (2016). https://github.com/CartoDB/cartodb/. Accessed May 2016

  • Han, J.: Spatial OLAP. In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of Geographical Information Sciences, pp. 809–812. Springer, New York (2008)

    Google Scholar 

  • BLfU: Berechnung CO2 Emissionen. Bayer. Landesamtes für Umwelt, Augsburg (2016). http://www.izu.bayern.de/praxis/detail_praxis.php?pid=0203010100217. Accessed May 2016

  • Pfoser, D.: Map-matching. In: Shekhar, S. and Xiong, H., (eds.) Encyclopedia of Geographical Information Sciences, pp. 632–633. Springer, New York (2008b)

    Google Scholar 

  • Bollmann, J., Koch, W.-G.: Lexikon der Kartographie und Geomatik. Spektrum Akademischer Verlag, Heidelberg (2005)

    Google Scholar 

  • Heidmann, F.: Interaktive Karten und Geovisualisierungen. In: Weber, W., Burmeister, H., Tille, R. (eds.) Interaktive Infografiken, pp. 66–67. Springer, Berlin (2013)

    Google Scholar 

  • Asche, H., Engemaier, R.: From concept to implementation: web-based cartographic visualisation with cartoservice. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part II. LNCS, vol. 7334, pp. 414–424. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgement

This research work is funded with a PhD scholarship by the German Research Foundation (DFG) within the research training group 1539 “Visibility and Visualisation - Hybrid Forms of Pictorial Knowledge” at the University of Potsdam. This support is gratefully acknowledged. The above PhD project is supervised by Hartmut Asche (University of Potsdam) and Frank Heidmann (Potsdam University of Applied Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Voland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Voland, P. (2016). Processing and Geo-visualization of Spatio-Temporal Sensor Data from Connected Automotive Electronics Systems. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9788. Springer, Cham. https://doi.org/10.1007/978-3-319-42111-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42111-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42110-0

  • Online ISBN: 978-3-319-42111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics