Skip to main content

A Developed NSGA-II Algorithm for Multi-objective Chiller Loading Optimization Problems

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9771))

Included in the following conference series:

  • 1893 Accesses

Abstract

During recent years, for its simplicity and efficiency, the non-dominated-sorting algorithm (NSGA-II) has been widely applied to solve multi-objective optimization problems. However, in the canonical NSGA-II, the resulted population may have multiple individuals with the same fitness values, and which makes the resulted population lack of diversity. To solve this kind of problem, in this study, we propose a developed NSGA-II algorithm (hereafter called NSGA-II-D). In NSGA-II-D, a novel duplicate individuals cleaning procedure is embedded to delete the individuals the same fitness values with other ones. Then, the proposed algorithm is tested on the well-known ZDT1 instance to verify the efficiency and performance. Finally, to solve the realisitc optimization problem in intelligent building system, we select a well-known optimal chiller loading (OCL) problem to test the ability to maintain population diversity. Experimental results on the benchmarks show the efficiency and effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  2. Sato, H., Aguirre, H.E., Tanaka, K.: Pareto partial dominance MOEA and hybrid archiving strategy included CDAS in many-objective optimization. IEEE Congr. Evol. Comput. (CEC) 2010, 1–8 (2010)

    Google Scholar 

  3. Aguirre, H., Tanaka, K.: Many-objective optimization by space partitioning and adaptive ε-ranking on MNK-landscapes. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 407–422. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Deb, K., Mohan, M., Mishra, S.: A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions. KanGAL report 2003002, Indian Institute of Technology, Kanpur, India (2003)

    Google Scholar 

  5. Kollat, J.B., Reed, P.: Comparison of multi-objective evolutionary algorithms for long-term monitoring design. Adv. Water Resour. 29(6), 792–807 (2006)

    Article  Google Scholar 

  6. Hadka, D., Reed, P.: Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21(2), 231–259 (2013)

    Article  Google Scholar 

  7. Wagner, M., Bringmann, K., Friedrich, T., Neumann, F.: Efficient optimization of many objectives by approximation-guided evolution. Eur. J. Oper. Res. (2014). (ISSN 0377-2217)

    Google Scholar 

  8. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade- offs and optimal access of web sources. In 41st Annual Symposium on Foundations of Computer Science (FOCS) 2000, pp. 86–92. IEEE Press (2000)

    Google Scholar 

  9. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multi-objective knapsack problems. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 210–221. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Deb, K.: Recent developments in evolutionary multi-objective optimization. Trends in Multiple Criteria Decision Analysis. volume 142 of International Series in Operations Research & Management Science, pp. 339–368. Springer, Heidelberg (2010). ISBN 978-1-4419-5903-4

    Chapter  Google Scholar 

  11. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 635–642. ACM (2006)

    Google Scholar 

  12. Nguyen, A.Q., Wagner, M., Neumann, F.: User preferences for approximation-guided multi-objective evolution. In: Dick, G., Browne, W.N., Whigham, P., Zhang, M., Bui, L.T., Ishibuchi, H., Jin, Y., Li, X., Shi, Y., Singh, P., Tan, K.C., Tang, K. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 251–262. Springer, Heidelberg (2014)

    Google Scholar 

  13. Friedrich, T., Kroeger, T., Neumann, F.: Weighted preferences in evolutionary multi-objective optimization. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS, vol. 7106, pp. 291–300. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume- based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011). ISSN 1063-6560

    Article  Google Scholar 

  15. While, L.P., Barone, H.L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006). ISSN 1089-778X

    Article  Google Scholar 

  16. Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersections of high-dimensional geometric objects. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 436–447. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). ISSN 1089-778X

    Article  Google Scholar 

  18. Deb, K., Saxena, D.K.: On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. KanGAL report 2005011, Indian Institute of Technology, Kanpur, India (2005)

    Google Scholar 

  19. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. IEEE Conf. Vis. 1990, 361–378 (1990)

    Google Scholar 

  20. Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap visualization of population based multi objective algorithms. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 361–375. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Mohammadi, A., Omidvar, M., Li, X., Deb, K.: Integrating user preferences and decomposition methods for many-objective optimization. IEEE Congr. Evol. Comput. (CEC) 2014, 421–428 (2014)

    Google Scholar 

  22. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by National Science Foundation of China under Grant 61573178, 61374187 and 61503170, basic scientific research foundation of Northeastern University under Grant N110208001, starting foundation of Northeastern University under Grant 29321006, Science Foundation of Liaoning Province in China (2013020016), Key Laboratory Basic Research Foundation of Education Department of Liaoning Province (LZ2014014), Science Research and Development of Provincial Department of Public Education of Shandong under Grant J12LN39, Shandong Province Higher Educational Science and Technology Program (J14LN28), and Postdoctoral Science Foundation of China (2015T80798, 2014M552040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-qing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Duan, PY., Wang, Y., Sang, Hy., Wang, Cg., Qi, My., Li, Jq. (2016). A Developed NSGA-II Algorithm for Multi-objective Chiller Loading Optimization Problems. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9771. Springer, Cham. https://doi.org/10.1007/978-3-319-42291-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42291-6_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42290-9

  • Online ISBN: 978-3-319-42291-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics