Abstract
Scene classification is one of the hot research topics in the field of computer vision, it is the basis of the organization and access for a variety of image database, so it has important practical significance. In our previous work, we put forward a novel fast scene classification method via DCT based on the energy concentration and multi-resolution characteristics of DCT coefficients. This paper improved our previous work proposed a scene classification method based on DCT domain using difference vectors. First of all, divided the whole image into the regular grid without repetition, in each grid, do DCT transform with the size of 8 * 8 get the DCT coefficients matrix, extract the AC coefficients in the matrix get the original vectors; Then, selected N images from each category in the database randomly, calculate the average vector of their original vectors, using the original vectors of all images corresponding category subtract the average vector get the difference vectors as the feature vectors; Finally, based on these feature vectors defined above, train classifiers with one-vs.-all support vector machine (SVM). In order to verify the robustness of the proposed algorithm, this paper has built an image database contains eight scene categories according to the OT database, this paper conducted cross validation experiment for the proposed method in the two databases. Experimental results show that the proposed method has higher accuracy and speed in image classification, and has good robustness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vailaya, A., Figueiredo, M.: Content-based hierarchical classification of vacation images. In: IEEE International Conference on Multimedia Computing and Systems, pp. 518–523 (1999)
Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)
Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: IEEE International Workshop on Content-Based Access of Image and Video Databases, pp. 42–51 (1998)
Fan, J., Gao, Y., Luo, H.: Statistical modeling and conceptualization of natural images. Pattern Recogn. 38(6), 865–885 (2005)
Fredembach, C., Schroder, M., Susstrunk, S.: Eigenregions for image classification. IEEE Trans. PAMI 26(12), 1645–1649 (2004)
Carson, C., Thomas, M., Belongie, S.: Blobworld: a system for region-based image indexing and retrieval. In: Proceedings of International Conference on Visual Information Systems, pp. 509–516 (1999)
Quelhas, P., Monay, F., Odobez, J.M.: A thousand words in a scene. IEEE Trans. PAMI 29(9), 1575–1589 (2007)
Lazebnik, S., Schmid, C.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178 (2006)
Liu, J.Y., Huang, Y.Z.: Hierarchical feature coding for image classification. Neurocomputing 4, 22 (2014)
Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42(1/2), 177–196 (2001)
Bosch, A., Zisserman, A., Mufioz, X.: Scene classification using a hybrid generative/discriminative approach. IEEE Trans. PAMI 30(4), 712–727 (2008)
Li, F.F., Perona, P.A.: Bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 524–531 (2005)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Li, C., Li, M.: A novel fast scene classification method via DCT. In: The 2014 7th International Congress on Image and Signal Processing, pp. 752–756 (2014)
Huang, X.L., Sun, S.L.: Image retrieval based on DCT compressed domain. Acta Electronica Sinica 30, 1786–1789 (2002)
Huang, X.L., Sun, S.L.: Texture-image classification with rotation invariant in compressed domain. J. Electron. Inf. Technol. 1141–1146 (2002)
Sun, L.: Pattern recognition, pp. 155–168. Beijing University of Technology Press (2009)
Itti, L., Siagian, C.: Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans. PAMI 29, 300–312 (2007)
Acknowledgments
The paper was supported in part by the China Postdoctoral Science Foundation (2014M550494), the National Natural Science Foundation (NSFC) of China under Grant Nos. (61365003, 61302116), Gansu Province Basic Research Innovation Group Project (1506RJIA031), and Natural Science Foundation of China in Gansu Province Grant No. 1308RJZA274.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, C., Li, M., Xiao, L., Ren, B. (2016). The Scene Classification Method Based on Difference Vector in DCT Domain. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9772. Springer, Cham. https://doi.org/10.1007/978-3-319-42294-7_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-42294-7_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42293-0
Online ISBN: 978-3-319-42294-7
eBook Packages: Computer ScienceComputer Science (R0)