Skip to main content

Identification of HOT Regions in the Human Genome Using Differential Chromatin Modifications

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9773))

Included in the following conference series:

  • 2960 Accesses

Abstract

HOT regions, short for high occupied target regions, bound by many transcription factors (TFs) are considered to be one of the most intriguing findings of the recent large-scale sequencing studies. Recent researches have reported that HOT regions are enriched with so many biological processes and functions, which are related with promoters, enhancers and fraction of motifs. Hence, there are a lot of studies focused on the discovery of HOT regions with TFs datasets. Unfortunately, because of the limited TFs datasets from next generation sequencing (NGS) technology and huge time consuming, the HOT regions in each cell line of human genome can’t be fully marked. Here, unlike the previous jobs, we have made an identification of HOT regions by means of machine learning algorithms in 14 different human cell-lines with chromatin modification datasets. The outperform results of these cell-lines can prove the effectiveness and precision of our assumption enough. In addition, we have discovered the cell-type specific HOT regions (CSHRs) of each cell line, which is used to elucidate the associations with cell-type specific regulatory functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ENCODE Project Consortium, Birney, E., Stamatoyannopoulos, J.A., Dutta, A., Guigo, R., Gingeras, T.R., et al.: Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447(7146), 799–816 (2007)

    Article  Google Scholar 

  2. ENCODE Project Consortium: A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9(4), e1001046 (2011)

    Article  Google Scholar 

  3. ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57–74 (2012)

    Article  Google Scholar 

  4. Gerstein, M.B., Lu, Z.J., Van Nostrand, E.L., Cheng, C., Arshinoff, B.I., et al.: Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330(6012), 1775–1787 (2010)

    Article  Google Scholar 

  5. Gerstein, M.B., Kundaje, A., Hariharan, M., Landt, S.G., Yan, K.K., Cheng, C., Mu, X.J., et al.: Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414), 91–100 (2012)

    Article  Google Scholar 

  6. Kvon, E.Z., Stampfel, G., Yanez-Cuna, J.O., Dickson, B.J., Stark, A.: HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signature. Genes Dev. 26(9), 908–913 (2012)

    Article  Google Scholar 

  7. Zhu, L., Deng, S.P., Huang, D.S.: A two-stage geometric method for pruning unreliable links in protein-protein networks. IEEE Trans. Nanobiosci. 14(5), 528–534 (2015)

    Article  Google Scholar 

  8. Zhu, L., You, Z.H., Huang, D.S., Wang, B.: t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. PLoS ONE 8(4), e58368 (2013)

    Article  Google Scholar 

  9. modENCODE Consortium, Roy, S., Ernst, J., Kharchenko, P.V., Kheradpour, P., Negre, N., Eaton, M.L., Landolin, J.M., Bristow, C.A., et al.: Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330(6012), 1787–1797 (2010)

    Google Scholar 

  10. Chen, H., Li, H., Liu, F., Zheng, X., Wang, S., Bo, X., Shu, W.: An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape. Sci. Rep. 5, 8465 (2015)

    Article  Google Scholar 

  11. Li, H., Chen, H., Liu, F., Ren, C., Wang, S., Bo, X., Shu, W.: Functional annotation of HOT regions in the human genome: implications for human disease and cancer. Sci. Rep. 5, 11633 (2015)

    Article  Google Scholar 

  12. Chen, R.A., Stempor, P., Down, T.A., Zeiser, E., Feuer, S.K., Ahringer, J.: Extreme HOT regions are CpG-dense promoters in C. elegans and humans. Genome Res. 24(7), 1138–1146 (2014)

    Article  Google Scholar 

  13. Yan, J., Enge, M., Whitington, T., Dave, K., Liu, J., Sur, I., Schmierer, B., Jolma, A., Kivioja, T., Taipale, M., Taipale, J.: Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154(4), 801–813 (2013)

    Article  Google Scholar 

  14. Gaszner, M., Felsenfeld, G.: Insulators: exploiting transcriptional and epigenetic mechanisms. Nat. Rev. Genet. 7(9), 703–713 (2006)

    Article  Google Scholar 

  15. Ernst, J., Kheradpour, P., Mikkelsen, T.S., Shoresh, N., Ward, L.D., Epstein, C.B., Zhang, X., Wang, L., Issner, R., Coyne, M., Ku, M., Durham, T., Kellis, M., Bernstein, B.E.: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345), 43–49 (2011)

    Article  Google Scholar 

  16. Chen, C., Zhang, S., Zhang, X.S.: Discovery of cell-type specific regulatory elements in the human genome using differential chromatin modification analysis. Nucleic Acids Res. 41(20), 9230–9242 (2013)

    Article  Google Scholar 

  17. Klevecz, R.R., Murray, D.B.: Genome wide oscillations in expression. Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype. Mol. Biol. Rep. 28(2), 73–82 (2001)

    Article  Google Scholar 

  18. Zhu, L., Guo, W.L., Deng, S.P., Huang, D.S.: ChIP-PIT: enhancing the analysis of ChIP-Seq data using convex-relaxed pair-wise interaction tensor decomposition. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(1), 55–63 (2016)

    Article  Google Scholar 

  19. Bullmore, E., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F., Carpenter, T.A., Brammer, M.: Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum. Brain Mapp. 12(2), 61–78 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants of the National Science Foundation of China, Nos. 61133010, 61520106006, 31571364, 61532008, 61572364, 61373105, 61303111, 61411140249, 61402334, 61472282, 61472280, 61472173, 61572447, and 61373098, China Postdoctoral Science Foundation Grant, Nos. 2014M561513 and 2015M580352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

He, F., Li, N. (2016). Identification of HOT Regions in the Human Genome Using Differential Chromatin Modifications. In: Huang, DS., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2016. Lecture Notes in Computer Science(), vol 9773. Springer, Cham. https://doi.org/10.1007/978-3-319-42297-8_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42297-8_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42296-1

  • Online ISBN: 978-3-319-42297-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics