Skip to main content

Improved Control Methods for Vibrotactile Rendering

  • Conference paper
  • First Online:
Haptics: Perception, Devices, Control, and Applications (EuroHaptics 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9774))

Abstract

Many applications in the domain of haptics make use of vibrotactile rendering. One means for the delivery of the signals is employing voice coil actuators. However, existing control strategies for these exhibit limitations, for instance their dynamic characteristic is often not taken into account leading to output distortion. We propose two new control methods to improve vibrotactile rendering – once based on data-driven spline interpolation and once on following power spectral density. Both approaches rely on the idea of first decomposing a desired signal into a combination of harmonic components of different frequencies. For these, separate optimal gains are then employed to achieve a flat frequency response. The behavior of these controllers is examined in experiments and compared to a constant gain strategy. Both proposed methods result in improvements, such as lower spectral dissimilarity scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://tactilelabs.com.

References

  1. McMahan, W., Romano, J.M., Abdul Rahuman, A.M., Kuchenbecker, K.J.: High frequency acceleration feedback significantly increases the realism of haptically rendered textured surfaces. In: 2010 IEEE Haptics Symposium, pp. 141–148. IEEE (2010)

    Google Scholar 

  2. Campion, G., Hayward, V.: Fundamental limits in the rendering of virtual haptic textures. In: World Haptics Conference, pp. 263–270 (2005)

    Google Scholar 

  3. Wall, S.A., Harwin, W.: A high bandwidth interface for haptic human computer interaction. Mechatronics 11(4), 371–387 (2001)

    Article  Google Scholar 

  4. Choi, S., Kuchenbecker, K.J.: Vibrotactile display: perception, technology, and applications. Proc. IEEE 101(9), 2093–2104 (2013)

    Article  Google Scholar 

  5. Tenzer, Y., Davies, B., et al.: Investigation into the effectiveness of vibrotactile feedback to improve the haptic realism of an arthroscopy training simulator. Stud. Health Technol. Inform. 132, 517–522 (2007)

    Google Scholar 

  6. Dennerlein, J.T., Millman, P.A., Howe, R.D.: Vibrotactile feedback for industrial telemanipulators. In: Sixth Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, ASME International Mechanical Engineering Congress and Exposition, vol. 61, pp. 189–195 (1997)

    Google Scholar 

  7. Culbertson, H., Unwin, J., Kuchenbecker, K.J.: Modeling and rendering realistic textures from unconstrained tool-surface interactions. IEEE Trans. Haptics 7(3), 381–393 (2014)

    Article  Google Scholar 

  8. Hachisu, T., Sato, M., Fukushima, S., Kajimoto, H.: Augmentation of material property by modulating vibration resulting from tapping. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part I. LNCS, vol. 7282, pp. 173–180. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Turchet, L., Burelli, P., Serafin, S.: Haptic feedback for enhancing realism of walking simulations. IEEE Trans. Haptics 6(1), 35–45 (2013)

    Article  Google Scholar 

  10. Olsson, P., Nysjö, F., Singh, N., Thor, A., Carlbom, I.: Visuohaptic bone saw simulator: combining vibrotactile and kinesthetic feedback. In: SIGGRAPH Asia 2015 Technical Briefs, p. 10. ACM (2015)

    Google Scholar 

  11. L’Orsa, R., Zareinia, K., Gan, L.S., Macnab, C., Sutherland, G.: Potential tissue puncture notification during telesurgery. In: Oakley, I., Brewster, S. (eds.) HAID 2013. LNCS, vol. 7989, pp. 30–39. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. McMahan, W., Kuchenbecker, K.J.: Dynamic modeling and control of voice-coil actuators for high-fidelity display of haptic vibrations. In: Haptics Symposium, pp. 115–122. IEEE (2014)

    Google Scholar 

  13. Tabatabaei Ardekani, I., Abdulla, W.H.: FxLMS-based active noise control: a quick review. In: Proceedings of Asia Pacific Signal and Information Processing Association Annual (APSIPA) Submit and Conference, pp. 1–11 (2011)

    Google Scholar 

  14. Shen, Q., Spanias, A.: Time and frequency domain X block LMS algorithms for single channel active noise control. In: Proceedings of 2nd International Congress on Recent Developments in Air-and Structure-Borne Sound Vibration, pp. 353–360 (1992)

    Google Scholar 

  15. Reichard, K.M., Swanson, D.C.: Frequency-domain implementation of the filtered-x algorithm with on-line system identification. In: Proceedings of Recent Advances in Active Control of Sound Vibration, pp. 562–573 (1993)

    Google Scholar 

  16. Tang, X.L., Lee, C.-M.: Time-frequency-domain filtered-x LMS algorithm for active noise control. J. Sound Vib. 331(23), 5002–5011 (2012)

    Article  Google Scholar 

  17. Della Flora, L., Grundling, H.A.: Time domain sinusoidal acceleration controller for an electrodynamic shaker. IET Control Theory Appl. 2(12), 1044–1053 (2008)

    Article  Google Scholar 

  18. Wellstead, P., Zarrop, M.: Self-tuning Systems: Control and Signal Processing. Wiley, New York (1991)

    MATH  Google Scholar 

  19. Yao, H.-Y., Hayward, V.: Design and analysis of a recoil-type vibrotactile transducer. J. Acoust. Soc. Am. 128(2), 619–627 (2010)

    Article  Google Scholar 

  20. Jacobsen, E., Lyons, R.: The sliding DFT. IEEE Sig. Process. Mag. 20(2), 74–80 (2003)

    Article  Google Scholar 

  21. Jacobsen, E., Lyons, R.: An update to the sliding DFT. Sig. Process. Mag. 21(1), 110–111 (2004)

    Article  Google Scholar 

  22. Bradford, R., Dobson, R., Ffitch, J.: Sliding is smoother than jumping. In: International Computer Music Conference, pp. 287–290 (2005)

    Google Scholar 

  23. Culbertson, H., Lopez Delgado, J.J., Kuchenbecker, K.J.: One hundred data-driven haptic texture models and open-source methods for rendering on 3D objects. In: IEEE Haptics Symposium, pp. 319–325. IEEE (2014)

    Google Scholar 

  24. Bensmaïa, S., Hollins, M.: Pacinian representations of fine surface texture. Percept. Psychophysics 67(5), 842–854 (2005)

    Article  Google Scholar 

  25. Kasilingam, G., Pasupuleti, J.: Coordination of PSS and PID controller for power system stability enhancement-overview. Indian J. Sci. Technol. 8(2), 142–151 (2015)

    Article  Google Scholar 

  26. Yoon, M.-H., Shin, C.-H.: Design of online auto-tuning pid controller for power plant process control. In: Proceedings of SICE Annual Conference, pp. 1221–1224. IEEE (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha-Van Quang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Quang, HV., Harders, M. (2016). Improved Control Methods for Vibrotactile Rendering. In: Bello, F., Kajimoto, H., Visell, Y. (eds) Haptics: Perception, Devices, Control, and Applications. EuroHaptics 2016. Lecture Notes in Computer Science(), vol 9774. Springer, Cham. https://doi.org/10.1007/978-3-319-42321-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42321-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42320-3

  • Online ISBN: 978-3-319-42321-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics