Abstract
In this study, we develop and implement a method for superimposing two vibration modes in order to produce different tactile stimuli on two fingers located in different positions. The tactile stimulation is based on the squeeze film effect which decreases the friction between a fingertip and a vibrating plate.
Experimental test have been conducted on a 1D tactile device. They show that it is possible to continuously control the friction on two fingers moving independently. Then, we developed the design of a 2D device based on the same principle, which gives rise to the design of a two-fingers tactile display. Evaluations were conducted using a modal analysis with experimental validation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, M.J., Johnson, S.A., Lefèvre, P., Lévesque, V., Hayward, V., André, T., Thonnard, J.L.: Finger pad friction and its role in grip and touch. J. R. Soc. Interface 10(80) (2012)
Bau, O., Poupyrev, I., Israr, A., Harrison, C.: Teslatouch: electrovibration for touch surfaces. In: Proceedings of the 23rd Annual ACM Symposium on User Interface Software and Technology, UIST 2010, pp. 283–292 (2010)
Chubb, E., Colgate, J., Peshkin, M.: Shiverpad: a glass haptic surface that produces shear force on a bare finger. IEEE Trans. Haptics 3(3), 189–198 (2010)
Ghenna, S., Giraud, F., Giraud-Audine, C., Amberg, M., Lemaire-Semail, B.: Preliminary design of a multi-touch ultrasonic tactile stimulator. In: 2015 IEEE World Haptics Conference (WHC), pp. 31–36, June 2015
Giraud, F., Amberg, M., Lemaire-Semail, B., Casiez, G.: Design of a transparent tactile stimulator. In: 2012 IEEE Haptics Symposium (HAPTICS), pp. 485–489, March 2012
Giraud, F., Giraud-Audine, C., Amberg, M., Lemaire-Semail, B.: Vector control method applied to a traveling wave in a finite beam. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(1), 147–158 (2014)
Graff, K.F.: Wave Motion in Elastic Solids. Dover Publications, Mineola (1991)
Nadal, C., Giraud-Audine, C., Giraud, F., Amberg, M., Lemaire-Semail, B.: Modelling of a beam excited by piezoelectric actuators in view of tactile applications. In: Mathematics and Computers in Simulation (2015)
Son, K.J., Kim, K.: The use of degenerate mode shapes in piezoelectric variable-friction tactile displays(the 12th international conference on motion and vibration control). Dynamics and Design Conference 2014(12), pp. 1–7, August 2014
Vezzoli, E., Ben Messaoud, W., Amberg, M., Giraud, F., Lemaire-Semail, B., Bueno, M.A.: Physical and perceptual independence of ultrasonic vibration and electrovibration for friction modulation. IEEE Trans. Haptics 8(2), 235–239 (2015)
Wiertlewski, M., Colgate, J.E.: Power optimization of ultrasonic friction-modulation tactile interfaces. Trans. Haptics 8(1), 43–53 (2014)
Acknowledgement
This work has been carried out within the framework of the project StimTac of IRCICA (institut de recherche sur les composants logiciels et matériels pour la communication avancée), and the Mint project of Inria.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Ghenna, S., Giraud-Audine, C., Giraud, F., Amberg, M., Lemaire-Semail, B. (2016). Modal Superimposition for Multi-fingers Variable Friction Tactile Device. In: Bello, F., Kajimoto, H., Visell, Y. (eds) Haptics: Perception, Devices, Control, and Applications. EuroHaptics 2016. Lecture Notes in Computer Science(), vol 9774. Springer, Cham. https://doi.org/10.1007/978-3-319-42321-0_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-42321-0_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42320-3
Online ISBN: 978-3-319-42321-0
eBook Packages: Computer ScienceComputer Science (R0)