Skip to main content

At-Home Computer-Aided Myoelectric Training System for Wrist Prosthesis

  • Conference paper
  • First Online:
Haptics: Perception, Devices, Control, and Applications (EuroHaptics 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9775))

Abstract

Development of tools for rehabilitation and restoration of the movement after amputation can benefit from the real time interactive virtual animation model of the human hand. Here, we report a computer-aided training/learning system for wrist disarticulated amputees, using the open source integrated development environment called “Processing”. This work also presents the development of a low-cost surface Electro-MyoGraphic (sEMG) interface, which is an ideal tool for training and rehabilitation applications. The processed sEMG signals are encoded after digitization to control the animated hand. Experimental results demonstrate the effectiveness of the sEMG control system in acquiring sEMG signals for real-time control. Users have also the ability to connect their prostheses with the training system and observe its operation for a more explicit demonstration of movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sherman, E.D.: A Russian bioelectric-controlled prosthesis: report of a research team from the Rehabilitation Institute of Montreal. Can. Med. Assoc. J. 91(24), 1268 (1964)

    Google Scholar 

  2. Navaraj, W.T., et al.: Upper limb prosthetic control using toe gesture sensors. In: IEEE SENSORS Conference Proceedings, pp. 1–4 (2015)

    Google Scholar 

  3. Kuiken, T.A., et al.: Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369, 371–380 (2007)

    Article  Google Scholar 

  4. Pasquina, P.F., et al.: First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J. Neurosci. Methods 244, 85–93 (2015)

    Article  Google Scholar 

  5. Pylatiuk, C., Schulz, S., Döderlein, L.: Results of an Internet survey of myoelectric prosthetic hand users. Prosthet. Orthot. Int. 31(4), 362–370 (2007)

    Article  Google Scholar 

  6. Carey, S.L., Dubey, R.V., Bauer, G.S., Highsmith, M.J.: Kinematic comparison of myoelectric and body powered prostheses while performing common activities. Prosthet. Orthot. Int. 33(2), 179–186 (2009)

    Article  Google Scholar 

  7. Simon, A.M., Stern, K., Hargrove, L.J.: A comparison of proportional control methods for pattern recognition control. In: International Conference of the IEEE EMBS (2011)

    Google Scholar 

  8. Corbett, E.A., Perreault, E.J., Kuiken, T.A.: Comparison of electromyography and force as interfaces for prosthetic control. J. Rehabil. Res. Dev. 48(6), 629 (2011)

    Article  Google Scholar 

  9. Lock, B.A., et al.: Prosthesis-guided training for practical use of pattern recognition control of prostheses. In: Myoelectric Symposium (2011)

    Google Scholar 

  10. Simon, A.M., Lock, B.A., Stubblefield, K.A., Hargrove, L.J.: Prosthesis-guided training increases functional wear time and improves tolerance to malfunctioning inputs of pattern recognition–controlled prostheses. In: Myoelectric Symposium (2011)

    Google Scholar 

  11. DiCicco, M., Lucas, L., Matsuoka, Y.: Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1622–1627 (2004)

    Google Scholar 

  12. Nielsen, J.L., et al.: Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training. IEEE Trans. Biomed. Eng. 58(3), 681–688 (2011)

    Article  Google Scholar 

  13. Davoodi, R., Loeb, G.E.: Real-time animation software for customized training to use motor prosthetic systems. IEEE Trans. Neural Syst. Rehabil. Eng. 20(2), 134–142 (2012)

    Article  Google Scholar 

  14. Antonio, B.M.J., Roberto, M.G.: Virtual system for training and evaluation of candidates to use a myoelectric prosthesis. In: 2011 Pan American Health Care Exchanges (PAHCE), pp. 225–230 (2011)

    Google Scholar 

  15. Barraza-Madrigal, J.A., Ramírez-García, A., Muñoz-Guerrero, R.: A virtual upper limb prosthesis as a training system. In: Electrical Engineering Computing Science and Automatic Control (CCE), pp. 210–215 (2010)

    Google Scholar 

  16. Blana, D., et al.: Feasibility of using combined EMG and kinematic signals for prosthesis control: a simulation study using a virtual reality environment. J. Electromyogr. Kinesiol. (2015)

    Google Scholar 

  17. Andrew, J.T.: Transhumeral and elbow disarticulation anatomically contoured socket considerations. JPO: J. Prosthet. Orthot. 20(3), 107–117 (2008)

    Google Scholar 

  18. Ballas, M.T., Ballas, G.J., Epoch Medical Innovations, Inc.: Adaptive compression prosthetic socket system and method, U.S. Patent 20,160,000,583 (2016)

    Google Scholar 

  19. Hurley, G.R., Williams, J.R., Lim Innovations, Inc.: Modular prosthetic sockets and methods for making same, U.S. Patent 20,160,000,587 (2016)

    Google Scholar 

  20. Erik Scheme, P., Kevin Englehart, P.: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. 48(6), 643 (2011)

    Article  Google Scholar 

  21. Lapatki, B.G., et al.: A thin, flexible multielectrode grid for high-density surface EMG. J. Appl. Physiol. 96(1), 327–336 (2004)

    Article  Google Scholar 

  22. Kim, D.H., et al.: Epidermal electronics. Science 333(6044), 838–843 (2011)

    Article  Google Scholar 

  23. Dahiya, R.S., et al.: Directions toward effective utilization of tactile skin: a review. IEEE Sens. J. 13(11), 4121–4138 (2013)

    Article  Google Scholar 

  24. Dahiya, R.S., et al.: Towards tactile sensing system on chip for robotic applications. IEEE Sens. J. 11(12), 3216–3226 (2011)

    Article  Google Scholar 

  25. Dahiya, R.S., et al.: Tactile sensing chips with POSFET array and integrated interface electronics. IEEE Sens. J. 14(10), 3448–3457 (2014)

    Article  MathSciNet  Google Scholar 

  26. Yogeswaran, N., Dang, W., Navaraj, W.T., Shakthivel, D., Khan, S., Polat, E.O., Gupta, S., Heidari, H., Kaboli, M., Lorenzelli, L., Cheng, G., Dahiya, R.: New materials and advances in making electronic skin for interactive robots. Adv. Robot. 29(21), 1359–1373 (2015)

    Article  Google Scholar 

  27. Heidari, H., Bonizzoni, E., Gatti, U., Maloberti, F.: A CMOS current-mode magnetic hall sensor with integrated front-end. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1270–1278 (2015)

    Article  MathSciNet  Google Scholar 

  28. Taylor, C.L., Schwarz, R.J.: The anatomy and mechanics of the human hand. Artif. Limbs 2(2), 22–35 (1955)

    Google Scholar 

  29. Napier, J.R.: The prehensile movements of the human hand. Bone Joint J. 38(4), 902–913 (1956)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by European Commission through grant agreement PITNGA-2012-317488-CONTEST, and Engineering and Physical Sciences Council (EPSRC) through Engineering Fellowship for Growth – Printable Tactile Skin (EP/M002527/1) and Centre for Doctoral Training in Integrative Sensing Measurement (EP/L016753/1) of the University of Glasgow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravinder Dahiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Vilouras, A., Heidari, H., Navaraj, W.T., Dahiya, R. (2016). At-Home Computer-Aided Myoelectric Training System for Wrist Prosthesis. In: Bello, F., Kajimoto, H., Visell, Y. (eds) Haptics: Perception, Devices, Control, and Applications. EuroHaptics 2016. Lecture Notes in Computer Science(), vol 9775. Springer, Cham. https://doi.org/10.1007/978-3-319-42324-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42324-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42323-4

  • Online ISBN: 978-3-319-42324-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics