Skip to main content

Decomposing Solution Sets of Polynomial Systems Using Derivatives

  • Conference paper
  • First Online:
Mathematical Software – ICMS 2016 (ICMS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9725))

Included in the following conference series:

Abstract

A core computation in numerical algebraic geometry is the decomposition of the solution set of a system of polynomial equations into irreducible components, called the numerical irreducible decomposition. One approach to validate a decomposition is what has come to be known as the “trace test.” This test, described by Sommese, Verschelde, and Wampler in 2002, relies upon path tracking and hence could be called the “tracking trace test.” We present a new approach which replaces path tracking with local computations involving derivatives, called a “local trace test.” We conclude by demonstrating this local approach with examples from kinematics and tensor decomposition.

All authors supported in part by NSF ACI 1460032, Sloan Research Fellowship, and Army Young Investigator Program (YIP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt, H.: Über die Erzeugung gegebener ebener Kurven mit Hilfe des Gelenkvierecks. ZAMM 3(1), 13–19 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software for numerical algebraic geometry. https://bertini.nd.edu

  3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically solving polynomial systems with Bertini. Software, Environments, and Tools, vol. 25. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2013)

    MATH  Google Scholar 

  4. Brake, D.A., Hauenstein, J.D., Murray, A.P., Myszka, D.H., Wampler, C.W.: The complete solution of Alt-Burmester synthesis problems for four-bar linkages. J. Mech. Robot. 8(4), 041018 (2016)

    Article  Google Scholar 

  5. Burmester, L.: Lehrbuch der Kinematic. Verlag Von Arthur Felix, Leipzig (1886)

    MATH  Google Scholar 

  6. Hauenstein, J.D., Ikenmeyer, C., Landsberg, J.M.: Equations for lower bounds on border rank. Exp. Math. 22(4), 372–383 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hauenstein, J.D., Rodriguez, J.I.: Numerical irreducible decomposition of multiprojective varieties (2015). arXiv:1507.07069

  8. Hauenstein, J.D., Sommese, A.J.: Witness sets of projections. Appl. Math. Comput. 217(7), 3349–3354 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Found. Comput. Math. 13(3), 371–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sommese, A.J., Verschelde, J., Wampler, C.W.: Using monodromy to decompose solution sets of polynomial systems into irreducible components. In: Ciliberto, C., Hirzebruch, F., Miranda, R., Teicher, M. (eds.) Applications of Algebraic Geometry to Coding Theory, Physics and Computation, pp. 297–315. Springer, Netherlands (2001)

    Chapter  Google Scholar 

  11. Sommese, A.J., Verschelde, J., Wampler, C.W.: Symmetric functions applied to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal. 40(6), 2026–2046 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005)

    Book  MATH  Google Scholar 

  13. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Hauenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brake, D.A., Hauenstein, J.D., Liddell, A.C. (2016). Decomposing Solution Sets of Polynomial Systems Using Derivatives. In: Greuel, GM., Koch, T., Paule, P., Sommese, A. (eds) Mathematical Software – ICMS 2016. ICMS 2016. Lecture Notes in Computer Science(), vol 9725. Springer, Cham. https://doi.org/10.1007/978-3-319-42432-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42432-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42431-6

  • Online ISBN: 978-3-319-42432-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics