Skip to main content

Border Basis for Polynomial System Solving and Optimization

  • Conference paper
  • First Online:
Mathematical Software – ICMS 2016 (ICMS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9725))

Included in the following conference series:

Abstract

We describe the software package borderbasix dedicated to the computation of border bases and the solutions of polynomial equations. We present the main ingredients of the border basis algorithm and the other methods implemented in this package: numerical solutions from multiplication matrices, real radical computation, polynomial optimization. The implementation parameterized by the coefficient type and the choice function provides a versatile family of tools for polynomial computation with modular arithmetic, floating point arithmetic or rational arithmetic. It relies on linear algebra solvers for dense and sparse matrices for these various types of coefficients. A connection with SDP solvers has been integrated for the combination of relaxation approaches with border basis computation. Extensive benchmarks on typical polynomial systems are reported, which show the very good performance of the tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    counted with cloc.

References

  1. Bucero, M.A., Mourrain, B.: Exact relaxation for polynomial optimization on semi-algebraic sets (2013). http://hal.inria.fr/hal-00846977

  2. Bucero, M.A., Mourrain, B.: Border basis relaxation for polynomial optimization. J. Symb. Comput. 74, 378–399 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users’ Guide. SIAM, Philadelphia (1992). http://www.netlib.org/lapack/

    MATH  Google Scholar 

  4. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corless, R.M., Gianni, P.M., Trager, B.M.: A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In: Küchlin, W.W. (ed.) Proceedings of ISSAC, pp. 133–140 (1997)

    Google Scholar 

  6. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-2 – A computer algebra system for polynomial computations (2015). www.singular.uni-kl.de

  7. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Liu, J.W.H., Li, X.S.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20, 720–755 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Faugère, J.-C.: FGb: a library for computing Gröbner bases. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 84–87. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) (2008)

    Google Scholar 

  10. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  11. Graillat, S., Trébuchet, P.: A new algorithm for computing certified numerical approximations of the roots of a zero-dimensional system. In: ISSAC 2009, pp. 167–173 (2009)

    Google Scholar 

  12. Huot, L.: Polynomial systems solving and elliptic curve cryptography. Ph.D. thesis, Université Pierre et Marie Curie (UPMC) (2013)

    Google Scholar 

  13. Lasserre, J.-B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  14. Lasserre, J.-B., Laurent, M., Mourrain, B., Rostalski, P., Trébuchet, P.: Moment matrices, border bases and real radical computation. J. Symb. Comput. 51, 63–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mourrain, B., Trébuchet, P.: Generalized normal forms and polynomials system solving. In: Kauers, M. (ed.) ISSAC 2005, pp. 253–260 (2005)

    Google Scholar 

  17. Mourrain, B., Trébuchet, P.: Border basis representation of a general quotient algebra. In: van der Hoeven, J. (ed.) ISSAC 2012, pp. 265–272 (2012)

    Google Scholar 

  18. MOSEK ApS. The MOSEK optimization library (2015). www.mosek.com

  19. Ottaviani, G., Spaenlehauer, P.-J., Sturmfels, B.: Exact solutions in structured low-rank approximation. SIAM J. Matrix Anal. Appl. 35(4), 1521–1542 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Parisse, B.: Giac/XCas, a free computer algebra system. Technical report, University of Grenoble (2008)

    Google Scholar 

  21. Trébuchet, P.: A new certified numerical algorithm for solving polynomial systems. In: SCAN 2010, pp. 1–8 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Mourrain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Trébuchet, P., Mourrain, B., Bucero, M.A. (2016). Border Basis for Polynomial System Solving and Optimization. In: Greuel, GM., Koch, T., Paule, P., Sommese, A. (eds) Mathematical Software – ICMS 2016. ICMS 2016. Lecture Notes in Computer Science(), vol 9725. Springer, Cham. https://doi.org/10.1007/978-3-319-42432-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42432-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42431-6

  • Online ISBN: 978-3-319-42432-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics