Skip to main content

Exercising Nuprl’s Open-Endedness

  • Conference paper
  • First Online:
Mathematical Software – ICMS 2016 (ICMS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9725))

Included in the following conference series:

Abstract

Nuprl is an interactive theorem prover that implements an extensional constructive type theory, where types are interpreted as partial equivalence relations on closed terms. Nuprl is both computationally and type-theoretically open-ended in the sense that both its computation system and its type theory can be extended as needed by checking a handful of conditions. For example, Doug Howe characterized the computations that can be added to Nuprl in order to preserve the congruence of its computational equivalence relation. We have implemented Nuprl’s computation and type systems in Coq, and we have showed among other things that it is consistent. Using our Coq framework we can now easily and rigorously add new computations and types to Nuprl by mechanically verifying that all the necessary conditions still hold. We have recently exercised Nuprl’s open-endedness by adding nominal features to Nuprl in order to prove a version of Brouwer’s continuity principle, as well as choice sequences in order to prove truncated versions of the axiom of choice and of Brouwer’s bar induction principle. This paper illustrate the process of extending Nuprl with versions of the axiom of choice.

V. Rahli—Partially supported by the SnT and by the National Research Fund Luxembourg (FNR), through PEARL grant FNR/P14/8149128.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The Agda Wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php

  2. Allen, S.F.: A non-type-theoretic semantics for type-theoretic language. Ph.D. thesis, Cornell University, (1987)

    Google Scholar 

  3. Allen, S.F., Bickford, M., Constable, R.L., Eaton, R., Kreitz, C., Lorigo, L., Moran, E.: Innovations in computational type theory using Nuprl. J. Appl. Logic 4(4), 428–469 (2006). http://www.nuprl.org/

    Article  MathSciNet  MATH  Google Scholar 

  4. Anand, A., Bickford, M., Constable, R.L., Rahli, V.: A type theory with partial equivalence relations as types. Presented at TYPES 2014 (2014)

    Google Scholar 

  5. Anand, A., Rahli, V.: Towards a formally verified proof assistant. Technical report, Cornell University (2014). http://www.nuprl.org/html/Nuprl2Coq/

  6. Anand, A., Rahli, V.: Towards a formally verified proof assistant. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 27–44. Springer, Heidelberg (2014)

    Google Scholar 

  7. Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom of choice. J. Symb. Log. 63(2), 600–622 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development. Springer, Heidelberg (2004). http://www.labri.fr/perso/casteran/CoqArt

    Book  MATH  Google Scholar 

  9. Bickford, M., Constable, R.: Inductive construction in Nuprl type theory using bar induction. Presented at TYPES 2014 (2014). http://nuprl.org/KB/show.php?ID=723

  10. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Brady, E.: IDRIS: systems programming meets full dependent types. In: PLPV 2011, pp. 43–54. ACM (2011)

    Google Scholar 

  12. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  13. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall Inc, Upper Saddle River (1986)

    Google Scholar 

  14. Constable, R.L.: Constructive mathematics as a programming logic I: some principles of theory. In: Karpinski, M. (ed.) Fundamentals of Computation Theory. LNCS, vol. 158, pp. 64–77. Springer, London (1983)

    Google Scholar 

  15. The Coq Proof Assistant. http://coq.inria.fr/

  16. Crary, K.: Type-theoretic methodology for practical programming languages. Ph.D. thesis, Cornell University, Ithaca, NY, August 1998

    Google Scholar 

  17. Dummett, M.A.E.: Elements of Intuitionism, 2nd edn. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  18. Escardó, M.H., Chuangjie, X.: The Inconsistency of a Brouwerian Continuity principle with the curry-howard interpretation. In: TLCA 2015, vol. 38, pp. 153–164. LIPIcs. Schloss Dagstuhl - Leibniz- Zentrum fuer Informatik (2015)

    Google Scholar 

  19. Allen, S.F., Constable, R.L., Howe, D.J.: Reflecting the open-ended computation system of constructive type theory. In: Bauer, F.L. (ed.) Logic, Algebra and Computation. NATO ASI Series, vol. 79, pp. 265–280. Springer, Heidelberg (1990)

    Google Scholar 

  20. Hofmann, M.: Extensional concepts in intensional type theory. Ph.D. thesis, University of Edinburgh (1995)

    Google Scholar 

  21. Howard, W.A., Kreisel, G.: Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis. J. Symb. Log. 31(3), 325–358 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  22. Howe, D.J.: Equality in lazy computation systems. In: LICS 1989, pp. 198–203. IEEE Computer Society (1989)

    Google Scholar 

  23. Howe, D.J.: Importing mathematics from HOL into Nuprl. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 267–282. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  24. Howe, D.J.: On computational open-endedness in Martin-Löf’s type theory. In: LICS 1991, pp. 162–172. IEEE Computer Society (1991)

    Google Scholar 

  25. Howe, D.J.: Semantic foundations for embedding HOL in Nuprl. In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 85–101. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  26. Idris. http://www.idris-lang.org/

  27. Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions. North-Holland Publishing Company, Amsterdam (1965)

    MATH  Google Scholar 

  28. Kopylov, A.: Type theoretical foundations for data structures, classes, and objects. Ph.D. thesis, Cornell University, Ithaca, NY (2004)

    Google Scholar 

  29. Kreisel, G.: On weak completeness of intuitionistic predicate logic. J. Symb. Logic 27(2), 139–158 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher- order logic - semantics, soundness, and a verified implementation. J. Autom. Reason. 56(3), 221–259 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Longley, J.: When is a functional program not a functional program? In: ICFP 1999, pp. 1–7. ACM (1999)

    Google Scholar 

  32. Nogin, A., Kopylov, A.: Formalizing type operations using the “Image” type constructor. Electr. Notes Theor. Comput. Sci. 165, 121–132 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rahli, V., Bickford, M.: A nominal exploration of intuitionism. Extended version of our CPP. 2016 paper (2015). http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf

  34. Rahli, V., Bickford, M.: A nominal exploration of intuitionism. In: CPP, pp. 130–141. ACM (2016)

    Google Scholar 

  35. Rahli, V., Bickford, M., Anand, A.: Formal program optimization in Nuprl using computational equivalence and partial types. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 261–278. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  36. Rahli, V., Bickford, M., Constable, R.L.: A story of bar induction in Nuprl (2015). Extended version http://www.nuprl.org/html/Nuprl2Coq/bar-induction-long.pdf

  37. Rathjen, M.: Constructive set theory and brouwerian principles. J. UCS 11(12), 2008–2033 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Smith, S.F.: Partial objects in type theory. Ph.D. thesis, Cornell University, Ithaca, NY (1989)

    Google Scholar 

  39. Troelstra, A.S.: A note on non-extensional operations in connection with continuity and recursiveness. Indagationes Mathematicae 39(5), 455–462 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  40. Troelstra, A.S.: Aspects of constructive mathematics. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 973–1052. North-Holland Publishing Company, Amsterdam (1977)

    Chapter  Google Scholar 

  41. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics an Introduction. Studies in Logic and the Foundations of Mathematics, vol. 121. Elsevier, North Holland (1988)

    MATH  Google Scholar 

  42. The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study (2013). http://homotopytypetheory.org/book

  43. Veldman, W.: Brouwer’s real thesis on bars. Philosophia Scientiæ CS6, 21–42 (2006)

    Article  Google Scholar 

  44. Veldman, W.: Understanding and using Brouwer’s Continuity principle. In: Schuster, P., Berger, U., Osswald, H. (eds.) Reuniting the Antipodes Constr-uctive and Nonstandard Views of the Continuum. Synthese Library, vol. 306, pp. 285–302. Springer, Netherlands (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Rahli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rahli, V. (2016). Exercising Nuprl’s Open-Endedness. In: Greuel, GM., Koch, T., Paule, P., Sommese, A. (eds) Mathematical Software – ICMS 2016. ICMS 2016. Lecture Notes in Computer Science(), vol 9725. Springer, Cham. https://doi.org/10.1007/978-3-319-42432-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42432-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42431-6

  • Online ISBN: 978-3-319-42432-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics