Abstract
Reductions—rules that reduce input size while maintaining the ability to compute an optimal solution—are critical for developing efficient maximum independent set algorithms in both theory and practice. While several simple reductions have previously been shown to make small domain-specific instances tractable in practice, it was only recently shown that advanced reductions (in a measure-and-conquer approach) can be used to solve real-world networks on millions of vertices [Akiba and Iwata, TCS 2016]. In this paper we compare these state-of-the-art reductions against a small suite of simple reductions, and come to two conclusions: just two simple reductions—vertex folding and isolated vertex removal—are sufficient for many real-world instances, and further, the power of the advanced rules comes largely from their initial application (i.e., kernelization), and not their repeated application during branch-and-bound. As a part of our comparison, we give the first experimental evaluation of a reduction based on maximum critical independent sets, and show it is highly effective in practice for medium-sized networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abu-Khzam, N.F., Fellows, R.M., Langston, A.M., Suters, H.W.: Crown structures for vertex cover kernelization. Theor. Comput. Syst. 41(3), 411–430 (2007)
Ageev, A.A.: On finding critical independent and vertex sets. SIAM J. Discrete Math. 7(2), 293–295 (1994)
Akiba, T., Iwata, Y.: Branch-and-reduce exponential, FPT algorithms in practice: a case study of vertex cover. Theor. Comput. Sci. 609(Part 1), 211–225 (2016)
Andrade, D.V., Resende, M.G., Werneck, R.F.: Fast local search for the maximum independent set problem. J. Heuristics 18(4), 525–547 (2012)
Batagelj, V., Mrvar, A.: Pajek datasets (2006). http://vlado.fmf.uni-lj.si/pub/networks/data/
Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014)
Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of 20th International Conference on World Wide Web (WWW 2011), pp. 587–596. ACM Press (2011)
Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In: Proceedings of 13th International Conference on World Wide Web (WWW 2004), pp. 595–601, Manhattan, USA, 2004. ACM Press
Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.: Fast algorithms for max independent set. Algorithmica 62(1–2), 382–415 (2012)
Butenko, S., Pardalos, P., Sergienko, I., Shylo, V., Stetsyuk, P.: Estimating the size of correcting codes using extremal graph problems. In: Pearce, C., Hunt, E. (eds.) Optimization. Springer Optimization and Its Applications, vol. 32, pp. 227–243. Springer, Heidelberg (2009)
Butenko, S., Trukhanov, S.: Using critical sets to solve the maximum independent set problem. Oper. Res. Lett. 35(4), 519–524 (2007)
Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)
Feo, T.A., Resende, M.G.C., Smith, S.H.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)
Fomin, F., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010)
Gajarský, J., Hliněný, P., Obdržálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Sánchez Villaamil, F., Sikdar, S.: Kernelization using structural parameters on sparse graph classes. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 529–540. Springer, Heidelberg (2013)
Garey, M., Johnson, D.: Computers and Intractibility: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)
Gemsa, A., Nöllenburg, M., Rutter, I.: Evaluation of labeling strategies for rotating maps. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 235–246. Springer, Heidelberg (2014)
Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)
Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow. In: Proceedings of 25th ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 1749–1761. SIAM (2014)
Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent contraction hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83–93. Springer, Heidelberg (2010)
Kunegis, J.: KONECT : the Koblenz network collection. In: Proceedings of 22nd International Conference on World Wide Web (WWW 2013), WWW 2013 Companion, pp. 1343–1350, New York, NY, USA, 2013. ACM
Larson, C.: A note on critical independence reductions. In: Bulletin of the Institute of Combinatorics and its Applications, vol. 51, pp. 34–46 (2007)
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
Li, C.-M., Fang, Z., Xu, K.: Combining MaxSAT reasoning and incremental upper bound for the maximum clique problem. In: Proceedings of IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI 2013), pp. 939–946, November 2013
Nemhauser, G., Trotter, J.: L.E. vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)
San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved bit parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013)
San Segundo, P., Rodrguez-Losada, D., Jimnez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)
Sanchis, L.A., Jagota, A.: Some experimental and theoretical results on test case generators for the maximum clique problem. INFORMS J. Comput. 8(2), 87–102 (1996)
Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient traversal of mesh edges using adjacency primitives. ACM Trans. Graph. 27(5), 144:1–144:9 (2008)
Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)
Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Rahman, M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer, Heidelberg (2010)
Verweij, B., Aardal, K.: An optimisation algorithm for maximum independent set with applications in map labelling. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 426–437. Springer, Heidelberg (1999)
Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: a simple maximum independent set algorithm in degree-3 graphs. Theor. Comput. Sci. 469, 92–104 (2013)
Zhang, C.-Q.: Finding critical independent sets and critical vertex subsets are polynomial problems. SIAM J. Discrete Math. 3(3), 431–438 (1990)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Strash, D. (2016). On the Power of Simple Reductions for the Maximum Independent Set Problem. In: Dinh, T., Thai, M. (eds) Computing and Combinatorics . COCOON 2016. Lecture Notes in Computer Science(), vol 9797. Springer, Cham. https://doi.org/10.1007/978-3-319-42634-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-42634-1_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42633-4
Online ISBN: 978-3-319-42634-1
eBook Packages: Computer ScienceComputer Science (R0)