Skip to main content

On the Power of Simple Reductions for the Maximum Independent Set Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9797))

Included in the following conference series:

Abstract

Reductions—rules that reduce input size while maintaining the ability to compute an optimal solution—are critical for developing efficient maximum independent set algorithms in both theory and practice. While several simple reductions have previously been shown to make small domain-specific instances tractable in practice, it was only recently shown that advanced reductions (in a measure-and-conquer approach) can be used to solve real-world networks on millions of vertices [Akiba and Iwata, TCS 2016]. In this paper we compare these state-of-the-art reductions against a small suite of simple reductions, and come to two conclusions: just two simple reductions—vertex folding and isolated vertex removal—are sufficient for many real-world instances, and further, the power of the advanced rules comes largely from their initial application (i.e., kernelization), and not their repeated application during branch-and-bound. As a part of our comparison, we give the first experimental evaluation of a reduction based on maximum critical independent sets, and show it is highly effective in practice for medium-sized networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/darrenstrash/open-mcs.

  2. 2.

    https://github.com/wata-orz/vertex_cover.

  3. 3.

    https://github.com/darrenstrash/kernel-mis.

  4. 4.

    ftp://dimacs.rutgers.edu/pub/challenge/.

References

  1. Abu-Khzam, N.F., Fellows, R.M., Langston, A.M., Suters, H.W.: Crown structures for vertex cover kernelization. Theor. Comput. Syst. 41(3), 411–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ageev, A.A.: On finding critical independent and vertex sets. SIAM J. Discrete Math. 7(2), 293–295 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akiba, T., Iwata, Y.: Branch-and-reduce exponential, FPT algorithms in practice: a case study of vertex cover. Theor. Comput. Sci. 609(Part 1), 211–225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrade, D.V., Resende, M.G., Werneck, R.F.: Fast local search for the maximum independent set problem. J. Heuristics 18(4), 525–547 (2012)

    Article  Google Scholar 

  5. Batagelj, V., Mrvar, A.: Pajek datasets (2006). http://vlado.fmf.uni-lj.si/pub/networks/data/

  6. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of 20th International Conference on World Wide Web (WWW 2011), pp. 587–596. ACM Press (2011)

    Google Scholar 

  8. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In: Proceedings of 13th International Conference on World Wide Web (WWW 2004), pp. 595–601, Manhattan, USA, 2004. ACM Press

    Google Scholar 

  9. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.: Fast algorithms for max independent set. Algorithmica 62(1–2), 382–415 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Butenko, S., Pardalos, P., Sergienko, I., Shylo, V., Stetsyuk, P.: Estimating the size of correcting codes using extremal graph problems. In: Pearce, C., Hunt, E. (eds.) Optimization. Springer Optimization and Its Applications, vol. 32, pp. 227–243. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Butenko, S., Trukhanov, S.: Using critical sets to solve the maximum independent set problem. Oper. Res. Lett. 35(4), 519–524 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feo, T.A., Resende, M.G.C., Smith, S.H.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)

    Article  MATH  Google Scholar 

  14. Fomin, F., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  15. Gajarský, J., Hliněný, P., Obdržálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Sánchez Villaamil, F., Sikdar, S.: Kernelization using structural parameters on sparse graph classes. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 529–540. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Garey, M., Johnson, D.: Computers and Intractibility: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  17. Gemsa, A., Nöllenburg, M., Rutter, I.: Evaluation of labeling strategies for rotating maps. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 235–246. Springer, Heidelberg (2014)

    Google Scholar 

  18. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow. In: Proceedings of 25th ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 1749–1761. SIAM (2014)

    Google Scholar 

  20. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent contraction hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83–93. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Kunegis, J.: KONECT : the Koblenz network collection. In: Proceedings of 22nd International Conference on World Wide Web (WWW 2013), WWW 2013 Companion, pp. 1343–1350, New York, NY, USA, 2013. ACM

    Google Scholar 

  22. Larson, C.: A note on critical independence reductions. In: Bulletin of the Institute of Combinatorics and its Applications, vol. 51, pp. 34–46 (2007)

    Google Scholar 

  23. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  24. Li, C.-M., Fang, Z., Xu, K.: Combining MaxSAT reasoning and incremental upper bound for the maximum clique problem. In: Proceedings of IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI 2013), pp. 939–946, November 2013

    Google Scholar 

  25. Nemhauser, G., Trotter, J.: L.E. vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved bit parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. San Segundo, P., Rodrguez-Losada, D., Jimnez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sanchis, L.A., Jagota, A.: Some experimental and theoretical results on test case generators for the maximum clique problem. INFORMS J. Comput. 8(2), 87–102 (1996)

    Article  MATH  Google Scholar 

  29. Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient traversal of mesh edges using adjacency primitives. ACM Trans. Graph. 27(5), 144:1–144:9 (2008)

    Article  Google Scholar 

  30. Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)

    Article  Google Scholar 

  31. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Rahman, M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Verweij, B., Aardal, K.: An optimisation algorithm for maximum independent set with applications in map labelling. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 426–437. Springer, Heidelberg (1999)

    Google Scholar 

  33. Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: a simple maximum independent set algorithm in degree-3 graphs. Theor. Comput. Sci. 469, 92–104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, C.-Q.: Finding critical independent sets and critical vertex subsets are polynomial problems. SIAM J. Discrete Math. 3(3), 431–438 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren Strash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Strash, D. (2016). On the Power of Simple Reductions for the Maximum Independent Set Problem. In: Dinh, T., Thai, M. (eds) Computing and Combinatorics . COCOON 2016. Lecture Notes in Computer Science(), vol 9797. Springer, Cham. https://doi.org/10.1007/978-3-319-42634-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42634-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42633-4

  • Online ISBN: 978-3-319-42634-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics