Skip to main content

Hadwiger’s Conjecture and Squares of Chordal Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9797))

Included in the following conference series:

  • 849 Accesses

Abstract

Hadwiger’s conjecture states that for every graph G, \(\chi (G)\le \eta (G)\), where \(\chi (G)\) is the chromatic number and \(\eta (G)\) is the size of the largest clique minor in G. In this work, we show that to prove Hadwiger’s conjecture in general, it is sufficient to prove Hadwiger’s conjecture for the class of graphs \(\mathcal {F}\) defined as follows: \(\mathcal {F}\) is the set of all graphs that can be expressed as the square graph of a split graph. Since split graphs are a subclass of chordal graphs, it is interesting to study Hadwiger’s Conjecture in the square graphs of subclasses of chordal graphs. Here, we study a simple subclass of chordal graphs, namely 2-trees and prove Hadwiger’s Conjecture for the squares of the same. In fact, we show the following stronger result: If G is the square of a 2-tree, then G has a clique minor of size \(\chi (G)\), where each branch set is a path.

L. Sunil Chandran—Part of the work was done when this author was visiting Max Planck Institute for Informatics, Saarbruecken, Germany supported by Alexander von Humboldt Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Subsect. 1.3 for the definition.

  2. 2.

    This generalization is in the same spirit as the generalization of graphs of maximum degree k to k-degenerate graphs. A graph G is a maximum degree k graph, if every vertex has at most k neighbors. A graph G is a k-degenerate graph is for any subset \(S \subseteq V(G)\), there exists a vertex \(u \in S\), such that u has at most k neighbors in G[S]. Graph classes which can be considered to be generalizations of quasi-line graphs can also be found in [KT14], for e.g. k-perfectly groupable graphs, k-simplicial graphs, k-perfectly orientable graphs etc.

  3. 3.

    We omit proofs of some lemmas here due to space constraint. They can be found in the full version of the paper at http://arxiv.org/abs/1603.03205.

References

  1. Appel, K., Haken, W., et al.: Every planar map is four colorable. part i: discharging. Ill. J. Math. 21(3), 429–490 (1977)

    MathSciNet  MATH  Google Scholar 

  2. Appel, K., Haken, W., Koch, J., et al.: Every planar map is four colorable. part ii: reducibility. Ill. J. Math. 21(3), 491–567 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Belkale, N., Sunil Chandran, L.: Hadwiger’s conjecture for proper circular arc graphs. Eur. J. Comb. 30(4), 946–956 (2009)

    Article  MATH  Google Scholar 

  4. Bollobs, B., Catlin, P.A., Erdős, P.: Hadwiger’s conjecture is true for almost every graph. Eur. J. Comb. 1(3), 195–199 (1980)

    Article  MATH  Google Scholar 

  5. Blasiak, J.: A special case of Hadwiger’s conjecture. arXiv preprint arXiv:math/0501073 (2005)

  6. Chudnovsky, M., Fradkin, A.O.: Hadwiger’s conjecture for quasi-line graphs. J. Graph Theory 59(1), 17–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sunil Chandran, L., Kostochka, A., Krishnam Raju, J.: Hadwiger number and the cartesian product of graphs. Graphs Comb. 24(4), 291–301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hadwiger, H.: Über eine klassifikation der streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich 88, 133–142 (1943)

    MathSciNet  MATH  Google Scholar 

  9. Kawarabayashi, K., Toft, B.: Any 7-chromatic graphs has k 7 or k 4, 4 as a minor. Combinatorica 25(3), 327–353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kammer, F., Tholey, T.: Approximation algorithms for intersection graphs. Algorithmica 68(2), 312–336 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, D., Liu, M.: Hadwigers conjecture for powers of cycles and their complements. Eur. J. Combinatorics 28(4), 1152–1155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Reed, B., Seymour, P.: Hadwiger’s conjecture for line graphs. Eur. J. Comb. 25(6), 873–876 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Robertson, N., Seymour, P., Thomas, R.: Hadwiger’s conjecture fork 6-free graphs. Combinatorica 13(3), 279–361 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114(1), 570–590 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wegner, G.: Graphs with given diameter and a coloring problem (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davis Issac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sunil Chandran, L., Issac, D., Zhou, S. (2016). Hadwiger’s Conjecture and Squares of Chordal Graphs. In: Dinh, T., Thai, M. (eds) Computing and Combinatorics . COCOON 2016. Lecture Notes in Computer Science(), vol 9797. Springer, Cham. https://doi.org/10.1007/978-3-319-42634-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42634-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42633-4

  • Online ISBN: 978-3-319-42634-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics