Skip to main content

Joint Optimization of Downlink and D2D Transmissions for SVC Streaming in Cooperative Cellular Networks

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9798))

Abstract

We study the problem of broadcasting scalable video coded (SVC) streams in cellular networks, where all user equipments (UEs) require the same video content and cooperate with each other. To take the advantage of channel diversity gains, the base station (BS) uses network coding to generate linear combinations of the video packets for broadcasting in the downlink. Once receiving sufficient number of the combinations, a UE can relay packets to others via device-to-device (D2D) connections. To optimize the downlink and D2D transmission arrangement, we first formulate a mixed integer non-linear programming (MINLP) problem, which becomes difficult to solve when the number of UEs increases. Then we convert the MINLP problem to a quasi-convex optimization problem using a continuous step function, and a primal-dual decomposition approach is used to solve it in a distributed way. Simulation results show that the proposed approach achieves a near-optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The set \({\widetilde{\mathcal{N}}}_i\) only contains UEs, and the BS is not included into it.

References

  1. Zhou, H., Ji, Y., Wang, X., Zhao, B.: Joint resource allocation and user association for SVC multicast over heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 14(7), 3673–3684 (2015)

    Article  Google Scholar 

  2. Bakhshali, A., Chan, W.-Y., Blostein, S.D., et al.: QoE optimization of video multicast with heterogeneous channels and playback requirements. EURASIP J. Wirel. Commun. Networking, 1–21 (2015)

    Google Scholar 

  3. He, Z., Cai, Z., Cheng, S., et al.: Approximate aggregation for tracking quantiles and range countings in wireless sensor networks. Theor. Comput. Sci. 607, 381–390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auwera, G.V.D., David, P.T., Reisslein, M.: Traffic and quality characterization of single-layer video streams encoded with the H.264/MPEG-4 advanced video coding standard and scalable video coding extension. Broadcast. IEEE Trans. 54(3), 698–718 (2008)

    Article  Google Scholar 

  5. Condoluci, M., Araniti, G., Molinaro, A., et al.: Multicast resource allocation enhanced by channel state feedbacks for multiple scalable video coding streams in LTE networks. Veh. Technol. IEEE Trans. 65(5), 1–15 (2015). 10.1109

    Google Scholar 

  6. Wang, X., Chen, J., Dutta, A., et al.: Adaptive video streaming over whitespace: SVC for 3-Tiered spectrum sharing. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 28–36 (2015)

    Google Scholar 

  7. Keller, L., Le, A., Cici, B., et al.: MicroCast: cooperative video streaming on smartphones. In: The 10th International Conference on Mobile Systems, Applications, and Services, pp. 57–70. ACM (2012)

    Google Scholar 

  8. Cheng, S., Cai, Z., Li, J.: Curve query processing in wireless sensor networks. Veh. Technol. IEEE Trans. 64(11), 5198–5209 (2015)

    Article  Google Scholar 

  9. Abedini, N., Sampath, S., Bhattacharyya, R., et al.: Realtime streaming with guaranteed QoS over wireless D2D networks. In: The Fourteenth ACM International Symposium on Mobile ad hoc Networking and Computing, pp. 197–206. ACM (2013)

    Google Scholar 

  10. Bethanabhotla, D., Caire, G., Neely, M.J.: Adaptive video streaming for wireless networks with multiple users and helpers. Commun. IEEE Trans. 63(1), 268–285 (2015)

    Google Scholar 

  11. Xing, M., Xiang, S., Cai, L.: A real-time adaptive algorithm for video streaming over multiple wireless access networks. Sel. Areas Commun. IEEE J. 32(4), 795–805 (2014)

    Article  Google Scholar 

  12. Almowuena, S., Rahman, M., Hsu, C.-H., et al.: Energy-aware and bandwidth-efficient hybrid video streaming over mobile networks. Multimedia IEEE Trans. 18(1), 102–115 (2016)

    Article  Google Scholar 

  13. Vukobratović, D., Stanković, V.: Unequal error protection random linear coding strategies for erasure channels. Commun. IEEE Trans. 60(5), 1243–1252 (2012)

    Article  Google Scholar 

  14. Ostovari, P., Wu, J., Khreishah, A., et al.: Scalable video streaming with helper nodes using random linear network coding. IEEE/ACM Trans. Netw., 1–14 (2015). doi:10.1109/TNET

  15. Thomos, N., Kurdoglu, E., Frossard, P., et al.: Adaptive prioritized random linear coding and scheduling for layered data delivery from multiple servers. Multimedia IEEE Trans. 17(6), 893–906 (2015)

    Article  Google Scholar 

  16. Wu, J., Cheng, B., Yuen, C., et al.: Distortion-aware concurrent multipath transfer for mobile video streaming in heterogeneous wireless networks. Mobile Comput. IEEE Trans. 14(4), 688–701 (2015)

    Article  Google Scholar 

  17. He, Z., Cai, Z., Wang, X.: Modeling propagation dynamics and developing optimized countermeasures for rumor spreading in online social networks. In: The 35th International Conference onDistributed Computing Systems, pp. 205–214. IEEE (2015)

    Google Scholar 

  18. Lei, L., Zhong, Z., Lin, C., et al.: Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wirel. Commun. 19(3), 96–104 (2012)

    Article  Google Scholar 

  19. Gilbert, E.N.: Capacity of a burst-noise channel. Bell Syst. Techn. J. 39(5), 1253–1265 (1960)

    Article  MathSciNet  Google Scholar 

  20. Hasslinger, G., Schwahn, A., Hartleb, F.: 2-State (semi-) Markov processes beyond Gilbert-Elliott: Traffic and channel models based on 2nd order statistics. In: 2013 Proceedings IEEE INFOCOM, pp. 1438–1446. IEEE (2013)

    Google Scholar 

  21. Wu, J., Yuen, C., Cheung, N.M., et al.: Delay-constrained high definition video transmission in heterogeneous wireless networks with multi-homed terminals. IEEE Trans. Mobile Comput. 15(3), 641–655 (2016)

    Article  Google Scholar 

  22. Gaudette, B., Hanumaiah, V., Vrudhula, S., et al.: Optimal range assignment in solar powered active wireless sensor networks. In: 2012 Proceedings IEEE INFOCOM, pp. 2354–2362. IEEE (2012)

    Google Scholar 

  23. Zhang, Y., He, S., Chen, J., et al.: Distributed sampling rate control for rechargeable sensor nodes with limited battery capacity. IEEE Trans. Wirel. Commun. 12(6), 3096–3106 (2013). Zhou15

    Article  MathSciNet  Google Scholar 

  24. Zhang, Y., He, S., Chen, J.: Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. IEEE/ACM Trans. Networking, doi:10.1109/TNET.2015.2425146

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61370212, 61402127 and 61502118), the Fundamental Research Fund for the Central Universities (No.HEUCF100601) and the Natural Science Foundation of Heilongjiang Province in China (No. F2016028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangsheng Feng or Junyu Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Feng, G. et al. (2016). Joint Optimization of Downlink and D2D Transmissions for SVC Streaming in Cooperative Cellular Networks. In: Yang, Q., Yu, W., Challal, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2016. Lecture Notes in Computer Science(), vol 9798. Springer, Cham. https://doi.org/10.1007/978-3-319-42836-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42836-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42835-2

  • Online ISBN: 978-3-319-42836-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics