Skip to main content

An Enhanced Structure-Based De-anonymization of Online Social Networks

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9798))

Abstract

To protect users’ privacy, online social network data are usually anonymized before being sold to or shared with third parities. Various structure-based approaches have been proposed to de-anonymize the social network data. In this paper, we study the limitations of the existing structure-based de-anonymization methods and propose an enhanced de-anonymization algorithm. The basic idea of our algorithm is to leverage the structural transformations of the social graph to de-anonymize the social network data. We also define a new similarity measure that is more robust for de-anonymization. We use the arXiv dataset to evaluate our algorithm, and the experiment results show that our method can significantly improve the de-anonymization rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexa: Top 500 global sites (2016). http://www.alexa.com/topsites. Accessed 2016

  2. arXiv: arxiv bibiography (2016). http://arxiv.org/help/api/index. Accessed 2016

  3. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. In: Proceedings of the 16th International Conference on World Wide Web. pp. 181–190. ACM (2007)

    Google Scholar 

  4. Bhagat, S., Cormode, G., Krishnamurthy, B., Srivastava, D.: Class-based graph anonymization for social network data. Proc. VLDB Endowment 2(1), 766–777 (2009)

    Article  Google Scholar 

  5. Deng, D., Du, H., Jia, X., Ye, Q.: Minimum-cost information dissemination in social networks. In: Xu, K., Zhu, H. (eds.) WASA 2015. LNCS, vol. 9204, pp. 83–93. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  6. Ding, X., Zhang, L., Wan, Z., Gu, M.: A brief survey on de-anonymization attacks in online social networks. In: 2010 International Conference on Computational Aspects of Social Networks (CASoN). pp. 611–615. IEEE (2010)

    Google Scholar 

  7. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Per. Ubiquit. Comput. 10(4), 255–268 (2006)

    Article  Google Scholar 

  8. Ji, S., Li, W., Gong, N.Z., Mittal, P., Beyah, R.A.: On your social network de-anonymizablity: quantification and large scale evaluation with seed knowledge. In: The 2015 Network and Distributed System Security (NDSS) (2015)

    Google Scholar 

  9. Ji, S., Li, W., Srivatsa, M., He, J.S., Beyah, R.: Structure based data de-anonymization of social networks and mobility traces. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 237–254. Springer, Heidelberg (2014)

    Google Scholar 

  10. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 30th IEEE Symposium on Security and Privacy, 2009, pp. 173–187. IEEE (2009)

    Google Scholar 

  11. Nilizadeh, S., Kapadia, A., Ahn, Y.Y.: Community-enhanced de-anonymization of online social networks. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. pp. 537–548. ACM (2014)

    Google Scholar 

  12. ONeill, N.: Senate begins discussing privacy implications of online advertising (2008). http://tinyurl.com/5aqqhe. Accessed 2008

  13. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 61–70. ACM (2002)

    Google Scholar 

  14. Rohan, T., Tunguz-Zawislak, T.J., Sheffer, S.G., Harmsen, J.: Network node ad targeting, May 2013. uS Patent 8,438,062

    Google Scholar 

  15. Srivatsa, M., Hicks, M.: Deanonymizing mobility traces: using social network as a side-channel. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security. pp. 628–637. ACM (2012)

    Google Scholar 

  16. Wang, Y., Cai, Z., Yin, G., Gao, Y., Tong, X., Wu, G.: An incentive mechanism with privacy protection in mobile crowdsourcing systems. Comput. Netw. 102, 157–171 (2016)

    Article  Google Scholar 

  17. Wondracek, G., Holz, T., Kirda, E., Kruegel, C.: A practical attack to de-anonymize social network users. In: IEEE Symposium on Security and Privacy 2010 (IEEE SP). pp. 223–238. IEEE (2010)

    Google Scholar 

  18. Zhang, L., Cai, Z., Wang, X.: Fakeit: privately releasing user context streams for personalized mobile applications. In: IEEE Transactions on Network and Service Management (2016)

    Google Scholar 

  19. Zhang, L., Wang, X., Lu, J., Li, P., Cai, Z.: An efficient privacy preserving data aggregation approach for mobile sensing. Secur. Commun. Netw. J. 11, 980–992 (2016)

    Google Scholar 

  20. Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph data. In: Bonchi, F., Malin, B., Saygın, Y. (eds.) PInKDD 2007. LNCS, vol. 4890, pp. 153–171. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Zhou, B., Pei, J., Luk, W.: A brief survey on anonymization techniques for privacy preserving publishing of social network data. ACM Sigkdd Explor. Newslett. 10(2), 12–22 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 61472418), the National Defense Basic Research Program of China (Grant No. JCKY2016602B001), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA06040100), and the National Defense Science and Technology Innovation Fund, CAS (No. CXJJ-16-M118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, H., Zhang, C., He, Y., Cheng, X., Liu, Y., Sun, L. (2016). An Enhanced Structure-Based De-anonymization of Online Social Networks. In: Yang, Q., Yu, W., Challal, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2016. Lecture Notes in Computer Science(), vol 9798. Springer, Cham. https://doi.org/10.1007/978-3-319-42836-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42836-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42835-2

  • Online ISBN: 978-3-319-42836-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics