Skip to main content

Self-learning Based Motion Recognition Using Sensors Embedded in a Smartphone for Mobile Healthcare

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9798))

Abstract

Human motion recognition using wearable sensors is becoming a popular topic in the field of mobile health recently. However, most previous studies haven’t solved the problem of unlabeled motion recognition very well due to the limitation of learning ability of their systems. In this paper, we propose a self-learning based motion recognition scheme for mobile healthcare, in which a patient only needs to carry an ordinary smartphone that integrates some common inertial sensors, and both labeled and unlabeled motion types can be recognized by using a self-learning data analysis scheme. Experimental results demonstrate that the proposed self-learning scheme behaves better than some existing ones, and its average accuracy reaches above 80 % for motion recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the help document of Android developer. http://developer.android.com/reference/packages.html.

  2. 2.

    Wikipedia: skewness. https://en.wikipedia.org/wiki/Skewness.

  3. 3.

    Wikipedia: Kurtosis. https://en.wikipedia.org/wiki/Kurtosis.

  4. 4.

    Wikipedia: https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient.

  5. 5.

    Wikipedia: https://en.wikipedia.org/wiki/Spearman’s_rank_correlation_coefficient.

References

  1. Győrbíró, N., Fábián, Á., Hományi, G.: An activity recognition system for mobile phones. Mob. Netw. Appl. 14(1), 82–91 (2009)

    Article  Google Scholar 

  2. Morán, A.L., Ramírez-Fernández, C., Meza-Kubo, V., Orihuela-Espina, F., García-Canseco, E., Grimaldo, A.I., Sucar, E.: On the effect of previous technological experience on the usability of a virtual rehabilitation tool for the physical activation and cognitive stimulation of elders. J. Med. Syst. 39(9), 1–11 (2015)

    Article  Google Scholar 

  3. Arif, M., Bilal, M., Kattan, A., et al.: Better physical activity classification using smartphone acceleration sensor. J. Med. Syst. 38(9), 1–10 (2014)

    Article  Google Scholar 

  4. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010)

    Article  Google Scholar 

  5. Turaga, P., Chellappa, R., Subrahmanian, V.S., et al.: Machine recognition of human activities: a survey. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1473–1488 (2008)

    Article  Google Scholar 

  6. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Grebel, K., Dang, D., Ma, L., Payne, D., Cooper, B.: iSound: a smartphone based intelligent sound fusion system for the hearing impaired. In: Xu, K., Zhu, H. (eds.) WASA 2015. LNCS, vol. 9204, pp. 155–164. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  8. Incel, O.D., Kose, M., Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013)

    Article  Google Scholar 

  9. Cheng, H.T., Sun, F.T., Griss, M., et al.: Nuactiv: recognizing unseen new activities using semantic attribute-based learning. In: Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, pp. 361–374. ACM (2013)

    Google Scholar 

  10. Yin, J., Yang, Q., Pan, J.J.: Sensor-based abnormal human-activity detection. IEEE Trans. Knowl. Data Eng. 20(8), 1082–1090 (2008)

    Article  Google Scholar 

  11. Ho, Y.-C., Lu, C.-H., Chen, I.-H., et al.: Active-learning assisted self-reconfigurable activity recognition in a dynamic environment. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, pp. 1567–1572. IEEE Press (2009)

    Google Scholar 

  12. Anguita, D., Ghio, A., Oneto, L., et al.: A public domain dataset for human activity recognition using smartphones. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN (2013)

    Google Scholar 

  13. Müller, M.: Dynamic time warping. Inf. Retrieval Music Motion, 69–84 (2007)

    Google Scholar 

  14. Foley, D.H., Sammon Jr., J.W.: An optimal set of discriminant vectors. IEEE Trans. Comput. 100(3), 281–289 (1975)

    Article  MATH  Google Scholar 

  15. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2579–2605), 85 (2008)

    MATH  Google Scholar 

  17. Ester, M., Kriegel, H.P., Sander, J., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol. 96(34), pp. 226–231 (1996)

    Google Scholar 

  18. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., et al.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  19. Bishop, C.M.: Novelty detection and neural network validation. IEE Proc. Vis. Image Sig. Process. 141(4), 217–222 (1994). IET

    Article  Google Scholar 

  20. Muñoz, A., Muruzábal, J.: Self-organizing maps for outlier detection. Neurocomputing 18(1), 33–60 (1998)

    Article  Google Scholar 

Download references

Acknowledgement

This research is sponsored by National Natural Science Foundation of China (No. 61401029, 61171014, 61272475, 61472044, 61472403, 61371185, 11401016, 11401028), the Fundamental Research Funds for the Central Universities (No. 2012LYB46, 2012LYB51, 2014KJJCB32, 2013NT57), Beijing Youth Excellence Program (YETP0296) and Beijing Advanced Innovation Center for Future Education (BJAICFE2016IR-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqi Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lu, D., Guo, J., Zhou, X., Zhao, G., Bie, R. (2016). Self-learning Based Motion Recognition Using Sensors Embedded in a Smartphone for Mobile Healthcare. In: Yang, Q., Yu, W., Challal, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2016. Lecture Notes in Computer Science(), vol 9798. Springer, Cham. https://doi.org/10.1007/978-3-319-42836-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42836-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42835-2

  • Online ISBN: 978-3-319-42836-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics