Abstract
Event logs are invaluable sources of knowledge about the actual execution of processes. A large number of techniques to mine, check conformance and analyze performance have been developed based on logs. All these techniques require at least case ID, activity ID and the timestamp to be in the log. If one of those is missing, these techniques cannot be applied. Real life logs are rarely originating from a centrally orchestrated process execution. Thus, case ID might be missing, known as unlabeled log. This requires a manual preprocessing of the log to assign case ID to events in the log.
In this paper, we propose a new approach to deduce case ID for the unlabeled event log depending on the knowledge about the process model. We provide a set of labeled logs instead of a single labeled log with different rankings. We evaluate our prototypical implementation against similar approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Complete implementation in https://github.com/DinaBayomie/DeducingCaseId.
References
der Aalst, W.V.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)
van der Aalst, W.M.P., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)
Bayomie, D., Helal, I.M.A., Awad, A., Ezat, E., ElBastawissi, A.: Deducing Case IDs for unlabeled Event Logs. Technical report, Cairo University. http://scholar.cu.edu.eg/?q=ahmedawad/files/bplabellingeventlog.pdf
Doganata, Y.N.: Designing internal control points in partially managed processes by using business vocabulary. In: ICDE Workshops. pp. 267–272. IEEE (2011)
Doganata, Y., Curbera, F.: Effect of using automated auditing tools on detecting compliance failures in unmanaged processes. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 310–326. Springer, Heidelberg (2009)
Dustdar, S., Gombotz, R.: Discovering web service workflows using web services interaction mining. Int. J. Bus. Process Integr. Manag. 1(4), 256 (2006)
Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158. Springer, Heidelberg (2009)
Herzberg, N., Kunze, M., Rogge-Solti, A.: Towards process evaluation in non-automated process execution environments. In: ZEUS. CEUR Workshop Proceedings, vol. 847, pp. 97–103 (2012). www.CEUR-WS.org
Idika, N.C., Varia, M., Phan, H.: The probabilistic provenance graph. In: IEEE Symposium on Security and Privacy Workshops. pp. 34–41. IEEE Computer Society (2013)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) Business Process Management Workshops. LNBIP, vol. 171, pp. 66–78. Springer, Heidelberg (2014)
Mukhi, N.K.: Monitoring unmanaged business processes. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 44–59. Springer, Heidelberg (2010)
Polyvyanyy, A., Weidlich, M.: Towards a compendium of process technologies - the jBPT library for process model analysis. In: CEUR Workshop Proceedings onCAiSE 2013 Forum, vol. 998, pp. 106–113 (2013). www.CEUR-WS.org
Rogge-Solti, A.: Probabilistic Estimation of Unobservered Process Events. University of Potsdam, Ph.D. (2014)
Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Repairing event logs using timed process models. In: Demey, Y.T., Panetto, H. (eds.) OTM 2013 Workshops 2013. LNCS, vol. 8186, pp. 705–708. Springer, Heidelberg (2013)
Suriadi, S., Ouyang, C., van der Aalst, W.M., ter Hofstede, A.H.: Event Gap Analysis: Understanding Why Processes Take Time. Technical report QUT: ePrints (2014)
Van Der Aalst, W.M.P., Van Dongen, B.F., Günther, C., Rozinat, A., Verbeek, H.M.W., Weijters, A.: Prom: the process mining toolkit. In: CEUR Workshop Proceedings, vol. 489 (2009)
Walicki, M., Ferreira, D.R.: Mining sequences for patterns with non-repeating symbols. In: IEEE Congress on Evolutionary Computation, CEC. pp. 1–8. IEEE (2010)
Walicki, M., Ferreira, D.R.: Sequence partitioning for process mining with unlabeled event logs. Data Knowl. Eng. 70(10), 821–841 (2011)
Walpole, E.R., Myers, R.H., Myers, S.L., Ye, K.E.: Probability and Statistics for Engineers and Scientists, 9th edn. Pearson, London (2011)
Weidlich, M.: Behavioral profiles - a relational approach to behaviour consistency. Ph.D. thesis, University of Potsdam (2011)
Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles - efficient computation, applications, and evaluation. Fundamenta Informaticae 113, 399–435 (2011)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Bayomie, D., Helal, I.M.A., Awad, A., Ezat, E., ElBastawissi, A. (2016). Deducing Case IDs for Unlabeled Event Logs. In: Reichert, M., Reijers, H. (eds) Business Process Management Workshops. BPM 2016. Lecture Notes in Business Information Processing, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-319-42887-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-42887-1_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42886-4
Online ISBN: 978-3-319-42887-1
eBook Packages: Computer ScienceComputer Science (R0)