Abstract
Histogram features are extracted by calculating the distribution of orientations of small fragments or quanta of sliding windows on the sensors continuously acceleration data stream. Bins of the histogram is automatically computed based on clusters of similar orientations of quanta, making it less sensitive to parameters used in selection of bins than a heuristic approach. We also present a finer representation of the sliding window by applying the above extraction method to extract local feature vectors of small data segments instead of calculating features from the whole sliding window. Extracted features are used with support vector machines trained to classify frames of data streams into containing falls or non-falls. We evaluated the proposed method on three public datasets with acceleration data including falls and other activities of daily living. On all three datasets, performance of the proposed method is substantially higher than two other fall detection methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A.: A smartphone-based fall detection system. Pervasive Mob. Comput. 8(6), 883–899 (2012)
Alwan, M., Rajendran, P.J., Kell, S., Mack, D., Dalal, S., Wolfe, M., Felder, R.: A smart and passive floor-vibration based fall detector for elderly. In: Information and Communication Technologies, ICTTA 2006, vol. 1, pp. 1003–1007. IEEE (2006)
Bagala, F., Becker, C., Cappello, A., Chiari, L., Aminian, K., Hausdorff, J.M., Zijlstra, W., Klenk, J.: Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 7(5), 1–9 (2012)
Lab, B.M.I.: MobiFall2 dataset. http://www.bmi.teicrete.gr/index.php/research/mobifall. Accessed 05 Dec 2015
Bourke, A.K., Lyons, G.M.: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med. Eng. Phys. 30, 84–90 (2008)
Bourke, A.K., OBrien, J.V., Lyons, G.M.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture 26(2), 194–199 (2007)
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
Chen, J., Kwong, K., Chang, D., Luk, J., Bajcsy, R.: Wearable sensors for reliable fall detection. In: Engineering in Medicine and Biology Society, pp. 3551–3554 (2005)
DLR: DLR dataset. http://www.dlr.de/kn/en/Portaldata/27/Resources/dokumente/04_abteilungen_fs/kooperative_systeme/high_precision_reference_data/Activity_DataSet.zip. Accessed 05 Dec 2015
Doukas, C., Maglogiannis, I., Tragas, P., Liapis, D., Yovanof, G.: Patient fall detection using support vector machines. In: Boukis, C., Pnevmatikakis, A., Polymenakos, L. (eds.) Artificial Intelligence and Innovations 2007: From Theory to Applications, pp. 147–156. Springer, Heidelberg (2007)
EduQTech Group: tFall dataset. http://eduqtech.unizar.es/fall-adl-data/. Accessed 22 Dec 2015
Frank, K., Nadales, M.J.V., Robertson, P., Pfeifer, T.: Bayesian recognition of motion related activities with inertial sensors. In: Proceedings of the 12th ACM International Conference Adjunct Papers on Ubiquitous Computing - Ubicomp 2010, p. 445 (2010)
Fu, Z., Culurciello, E., Lichtsteiner, P., Delbruck, T.: Fall detection using an address-event temporal contrast vision sensor. In: IEEE International Symposium on Circuits and Systems, ISCAS 2008, pp. 424–427. IEEE (2008)
Hazelhoff, L., Han, J., de With, P.H.N.: Video-based fall detection in the home using principal component analysis. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 298–309. Springer, Heidelberg (2008)
Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. BioMed. Eng. OnLine 12(1), 1 (2013)
Jantaraprim, P., Phukpattaranont, P., Limsakul, C., Wongkittisuksa, B.: Fall detection for the elderly using a support vector machine. Int. J. Soft Comput. Eng. 2(1), 484–490 (2012)
Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait & posture 28(2), 285–291 (2008)
Lai, C.F., Chang, S.Y., Chao, H.C., Huang, Y.M.: Detection of cognitive injured body region using multiple triaxial accelerometers for elderly falling. IEEE Sens. J. 11(3), 763–770 (2011)
Lindemann, U., Hock, A., Stuber, M., Keck, W., Becker, C.: Evaluation of a fall detector based on accelerometers: a pilot study. Med. Biol. Eng. Comput. 43(5), 548–551 (2005)
Medrano, C., Igual, R., Plaza, I., Castro, M.: Detecting falls as novelties in acceleration patterns acquired with smartphones. PLoS ONE 9(4), e94811 (2014)
Noury, N., Rumeau, P., Bourke, A.K., ÓLaighin, G., Lundy, J.E.: A proposal for the classification and evaluation of fall detectors. Irbm 29(6), 340–349 (2008)
Pham, C., Phuong, T.M.: Real-time fall detection and activity recognition using low-cost wearable sensors. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 673–682. Springer, Heidelberg (2013)
Reece, A.C., Simpson, J.M.: Preparing older people to cope after a fall. Physiotherapy 82(4), 227–235 (1996)
Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Fall detection from human shape and motion history using video surveillance. In: 21st International Conference on Advanced Information Networking and Applications Workshops, AINAW 2007, vol. 2, pp. 875–880. IEEE (2007)
Vavoulas, G., Pediaditis, M., Spanakis, E.G., Tsiknakis, M.: The MobiFall dataset: an initial evaluation of fall detection algorithms using smartphones. In: 13th IEEE International Conference on BioInformatics and BioEngineering, pp. 1–4 (2013)
Wild, D., Nayak, U.S., Isaacs, B.: How dangerous are falls in old people at home? BMJ 282(6260), 266–268 (1981)
Wu, G.E., Xue, S.: Portable preimpact fall detector with inertial sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 16(2), 178–183 (2008)
Zhang, T., Wang, J., Xu, L., Liu, P.: Fall detection by wearable sensor and one-class SVM algorithm. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) Intelligent computing in signal processing and pattern recognition, pp. 858–863. Springer, Heidelberg (2006)
Zigel, Y., Litvak, D., Gannot, I.: A method for automatic fall detection of elderly people using floor vibrations and soundproof of concept on human mimicking doll falls. IEEE Trans. Biomed. Eng. 56(12), 2858–2867 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Diep, N.N., Pham, C., Phuong, T.M. (2016). An Orientation Histogram Based Approach for Fall Detection Using Wearable Sensors. In: Booth, R., Zhang, ML. (eds) PRICAI 2016: Trends in Artificial Intelligence. PRICAI 2016. Lecture Notes in Computer Science(), vol 9810. Springer, Cham. https://doi.org/10.1007/978-3-319-42911-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-42911-3_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42910-6
Online ISBN: 978-3-319-42911-3
eBook Packages: Computer ScienceComputer Science (R0)