Skip to main content

An Orientation Histogram Based Approach for Fall Detection Using Wearable Sensors

  • Conference paper
  • First Online:
PRICAI 2016: Trends in Artificial Intelligence (PRICAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9810))

Included in the following conference series:

Abstract

Histogram features are extracted by calculating the distribution of orientations of small fragments or quanta of sliding windows on the sensors continuously acceleration data stream. Bins of the histogram is automatically computed based on clusters of similar orientations of quanta, making it less sensitive to parameters used in selection of bins than a heuristic approach. We also present a finer representation of the sliding window by applying the above extraction method to extract local feature vectors of small data segments instead of calculating features from the whole sliding window. Extracted features are used with support vector machines trained to classify frames of data streams into containing falls or non-falls. We evaluated the proposed method on three public datasets with acceleration data including falls and other activities of daily living. On all three datasets, performance of the proposed method is substantially higher than two other fall detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A.: A smartphone-based fall detection system. Pervasive Mob. Comput. 8(6), 883–899 (2012)

    Article  Google Scholar 

  2. Alwan, M., Rajendran, P.J., Kell, S., Mack, D., Dalal, S., Wolfe, M., Felder, R.: A smart and passive floor-vibration based fall detector for elderly. In: Information and Communication Technologies, ICTTA 2006, vol. 1, pp. 1003–1007. IEEE (2006)

    Google Scholar 

  3. Bagala, F., Becker, C., Cappello, A., Chiari, L., Aminian, K., Hausdorff, J.M., Zijlstra, W., Klenk, J.: Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 7(5), 1–9 (2012)

    Article  Google Scholar 

  4. Lab, B.M.I.: MobiFall2 dataset. http://www.bmi.teicrete.gr/index.php/research/mobifall. Accessed 05 Dec 2015

  5. Bourke, A.K., Lyons, G.M.: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med. Eng. Phys. 30, 84–90 (2008)

    Article  Google Scholar 

  6. Bourke, A.K., OBrien, J.V., Lyons, G.M.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture 26(2), 194–199 (2007)

    Article  Google Scholar 

  7. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)

    Article  Google Scholar 

  8. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  9. Chen, J., Kwong, K., Chang, D., Luk, J., Bajcsy, R.: Wearable sensors for reliable fall detection. In: Engineering in Medicine and Biology Society, pp. 3551–3554 (2005)

    Google Scholar 

  10. DLR: DLR dataset. http://www.dlr.de/kn/en/Portaldata/27/Resources/dokumente/04_abteilungen_fs/kooperative_systeme/high_precision_reference_data/Activity_DataSet.zip. Accessed 05 Dec 2015

  11. Doukas, C., Maglogiannis, I., Tragas, P., Liapis, D., Yovanof, G.: Patient fall detection using support vector machines. In: Boukis, C., Pnevmatikakis, A., Polymenakos, L. (eds.) Artificial Intelligence and Innovations 2007: From Theory to Applications, pp. 147–156. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. EduQTech Group: tFall dataset. http://eduqtech.unizar.es/fall-adl-data/. Accessed 22 Dec 2015

  13. Frank, K., Nadales, M.J.V., Robertson, P., Pfeifer, T.: Bayesian recognition of motion related activities with inertial sensors. In: Proceedings of the 12th ACM International Conference Adjunct Papers on Ubiquitous Computing - Ubicomp 2010, p. 445 (2010)

    Google Scholar 

  14. Fu, Z., Culurciello, E., Lichtsteiner, P., Delbruck, T.: Fall detection using an address-event temporal contrast vision sensor. In: IEEE International Symposium on Circuits and Systems, ISCAS 2008, pp. 424–427. IEEE (2008)

    Google Scholar 

  15. Hazelhoff, L., Han, J., de With, P.H.N.: Video-based fall detection in the home using principal component analysis. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 298–309. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. BioMed. Eng. OnLine 12(1), 1 (2013)

    Article  Google Scholar 

  17. Jantaraprim, P., Phukpattaranont, P., Limsakul, C., Wongkittisuksa, B.: Fall detection for the elderly using a support vector machine. Int. J. Soft Comput. Eng. 2(1), 484–490 (2012)

    Google Scholar 

  18. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait & posture 28(2), 285–291 (2008)

    Article  Google Scholar 

  19. Lai, C.F., Chang, S.Y., Chao, H.C., Huang, Y.M.: Detection of cognitive injured body region using multiple triaxial accelerometers for elderly falling. IEEE Sens. J. 11(3), 763–770 (2011)

    Article  Google Scholar 

  20. Lindemann, U., Hock, A., Stuber, M., Keck, W., Becker, C.: Evaluation of a fall detector based on accelerometers: a pilot study. Med. Biol. Eng. Comput. 43(5), 548–551 (2005)

    Article  Google Scholar 

  21. Medrano, C., Igual, R., Plaza, I., Castro, M.: Detecting falls as novelties in acceleration patterns acquired with smartphones. PLoS ONE 9(4), e94811 (2014)

    Article  Google Scholar 

  22. Noury, N., Rumeau, P., Bourke, A.K., ÓLaighin, G., Lundy, J.E.: A proposal for the classification and evaluation of fall detectors. Irbm 29(6), 340–349 (2008)

    Article  Google Scholar 

  23. Pham, C., Phuong, T.M.: Real-time fall detection and activity recognition using low-cost wearable sensors. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 673–682. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Reece, A.C., Simpson, J.M.: Preparing older people to cope after a fall. Physiotherapy 82(4), 227–235 (1996)

    Article  Google Scholar 

  25. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Fall detection from human shape and motion history using video surveillance. In: 21st International Conference on Advanced Information Networking and Applications Workshops, AINAW 2007, vol. 2, pp. 875–880. IEEE (2007)

    Google Scholar 

  26. Vavoulas, G., Pediaditis, M., Spanakis, E.G., Tsiknakis, M.: The MobiFall dataset: an initial evaluation of fall detection algorithms using smartphones. In: 13th IEEE International Conference on BioInformatics and BioEngineering, pp. 1–4 (2013)

    Google Scholar 

  27. Wild, D., Nayak, U.S., Isaacs, B.: How dangerous are falls in old people at home? BMJ 282(6260), 266–268 (1981)

    Article  Google Scholar 

  28. Wu, G.E., Xue, S.: Portable preimpact fall detector with inertial sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 16(2), 178–183 (2008)

    Article  Google Scholar 

  29. Zhang, T., Wang, J., Xu, L., Liu, P.: Fall detection by wearable sensor and one-class SVM algorithm. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) Intelligent computing in signal processing and pattern recognition, pp. 858–863. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Zigel, Y., Litvak, D., Gannot, I.: A method for automatic fall detection of elderly people using floor vibrations and soundproof of concept on human mimicking doll falls. IEEE Trans. Biomed. Eng. 56(12), 2858–2867 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Ngoc Diep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Diep, N.N., Pham, C., Phuong, T.M. (2016). An Orientation Histogram Based Approach for Fall Detection Using Wearable Sensors. In: Booth, R., Zhang, ML. (eds) PRICAI 2016: Trends in Artificial Intelligence. PRICAI 2016. Lecture Notes in Computer Science(), vol 9810. Springer, Cham. https://doi.org/10.1007/978-3-319-42911-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42911-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42910-6

  • Online ISBN: 978-3-319-42911-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics