Skip to main content

Robot Moves as Tangible Feedback in a Mathematical Game at Primary School

  • Conference paper
  • First Online:
Robotics in Education

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 457))

Abstract

We study how elementary school pupils give sense to the moves of a mobile robot in a mathematical game. The game consists in choosing 3 numbers out of 6, whose sum is a given target number. The robot moves on a game board have been implemented to provide pupils with a tangible feedback about their answer. We have studied strategies of pupils to solve the problem and their evolution. Our methodology included interviews, aloud verbalization and video observations of 28 pupils in grade 1 and 2 while they are playing. The pursuit of a mastery goal encourages a trial and error strategy for only some of the pupils. We conclude that some aspects of the moves of the robot, like its position, are perceived as a form of help and not as a threat, even if they are only partially understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Funded by the French Bank for Public Investments, it is a partnership between two companies, digiSchool and Awabot, and two public institutions, Erasme and the French Institute of Education.

References

  1. Martin, T., Schwartz, D.L.: Physically distributed learning: adapting and reinterpreting physical environments in the development of fraction concepts. Cogn. Sci. 29(4), 587–625 (2005)

    Article  Google Scholar 

  2. Lakoff, G., Nunez, R.: Where mathematics comes from: how the embodied mind brings mathematics into being. Basic Books, New York (2000)

    MATH  Google Scholar 

  3. Edwards, L., Radford, L., Arzarello, F.: Gestures and multimodality in the construction of mathematical meaning. Educ. Stud. Math. 70(2) (2009)

    Google Scholar 

  4. Brousseau, G.: Theory of didactical situations in mathematics. Springer, Netherlands (1997)

    Google Scholar 

  5. Oviatt, S.: Designing digital tools for thinking, adaptative learning and cognitive evolution. CHI, Vancouver, Canada (2011)

    Google Scholar 

  6. Mellet-d’Huart, D., Michel, G.: Réalité virtuelle et apprentissage. In: Grandbastien, M., Labat, J.-M. (eds.) Les environnements informatiques pour l’apprentissage humain. Traité IC2 Information Commande Communication. Hermes (2006)

    Google Scholar 

  7. Africano, D., Berg, S., Lindbergh, K., Lundholm, P., Nilbrink, F., Persson, A.: Designing Tangible Interface for Children’s Collaboration. CHI, Vienna, Austria (2004)

    Google Scholar 

  8. Kubucki, S., Pasco, D., Arnaud, I.: Using a serious game with a tangible tabletop interface to promote student engagement in a first grade classroom: a comparative evaluation study. Int. J. Comput. Inf. Technol. 4(2), 381–389 (2015)

    Google Scholar 

  9. Vergnaud, G.: The theory of conceptual fields. Hum. Dev. 52, 83–94 (2009)

    Article  Google Scholar 

  10. Balacheff, N.: cK¢, a model to reason on learners’ conceptions. In: Martinez M. V., Castro Superfine A. (eds.) PME-NA Psychology of Mathematics Education, North America Chapter. pp. 2–15. Chicago, IL, USA (2013)

    Google Scholar 

  11. Sylla, C., Branco, P., Coutinho, C., Coquet, E., Skaroupka, D.: TOK—a tangible interface for story’s telling. CHI 2011, Vancouver, Canada (2011)

    Google Scholar 

  12. Salen, K., Zimmerman, E.: Rules of Play: Game Design Fundamentals. The MIT Press, Cambridge, MA (2004)

    Google Scholar 

  13. Sweetser, P., Wyeth, P.: GameFlow: a model for evaluating player enjoyment in games. Comput. Entertain. 3(3), 1–24 (2005)

    Article  Google Scholar 

  14. Kluger, A.N., DeNisi, A.: The effects of feedback interventions on performance: a historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychol. Bull. 119(2), 254–284 (1996)

    Article  Google Scholar 

  15. Hattie, J., Timperley, H.: The power of feedback. Rev. Educ. Res. 77(1), 80–112 (2007)

    Article  Google Scholar 

  16. Shute, V.J.: Focus on formative feedback. Rev. Educ. Res. 78(1), 153–189 (2000)

    Article  Google Scholar 

  17. Noury, F., Huet, N., Escribe, C., Sakdavong, J.-C., Catteau, O.: Buts d’accomplissement de soi et jugement métacognitif des aides en EIAH. Environnement Informatique pour l’Apprentissage Humain (EIAH 2007), pp. 293–298. INRP, France (2007)

    Google Scholar 

  18. Rodet, J.: La rétroaction, support d’apprentissage? Revue du Conseil Québécois de la Formation à Distance. 4(2), 45–46 (2000)

    Google Scholar 

  19. Mackrell, K., Maschietto, M., Soury-Lavergne, S.: The interaction between task design and technology design in creating tasks with Cabri Elem. In: Margolinas, C. (ed.) ICMI Study 22 Task Design in Mathematics Education, pp. 81–90. Oxford, UK (2013)

    Google Scholar 

  20. Magliano, J.P., Millis, K.K.: Assessing reading skill with a think-aloud procedure and latent semantic analysis. Cogn. Inst. 21(3), 251–283 (2003)

    Article  Google Scholar 

  21. Hayes, J.R., Flower, L.S.: Identifying the organization of writing processes. In: Gregg, L.W., Steinberg, E.R. (eds.) Cognitive Processes in Writing, pp. 3–30. Erlbaum, Hillsdale (1980)

    Google Scholar 

  22. Rosenzweig, C., Krawec, J., Montague, M.: Metacognitive strategy use of eight-grade students with and without learning disabilities during mathematical problem solving: a think-aloud analysis. J. Learn. Disabil. 44(6), 508–520 (2011)

    Article  Google Scholar 

  23. Mandin, S., Guin, N., Lefevre, M.: Modèle de personnalisation de l’apprentissage pour un EIAH fondé sur un référentiel de compétences. EIAH’15, Agadir, Maroc (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Mandin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Mandin, S., De Simone, M., Soury-Lavergne, S. (2017). Robot Moves as Tangible Feedback in a Mathematical Game at Primary School. In: Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R. (eds) Robotics in Education. Advances in Intelligent Systems and Computing, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-319-42975-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42975-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42974-8

  • Online ISBN: 978-3-319-42975-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics