Skip to main content

Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling

  • Chapter
  • First Online:
Deep Learning and Convolutional Neural Networks for Medical Image Computing

Abstract

Accurate automatic detection and segmentation of abdominal organs from CT images is important for quantitative and qualitative organ tissue analysis, detection of pathologies, surgical assistance as well as computer-aided diagnosis (CAD). In general, the large variability of organ locations, the spatial interaction between organs that appear similar in medical scans and orientation and size variations are among the major challenges of organ segmentation. The pancreas poses these challenges in addition to its flexibility which allows for the shape of the tissue to vastly change. In this chapter, we present a fully automated bottom-up approach for pancreas segmentation in abdominal computed tomography (CT) scans. The method is a four-stage system based on a hierarchical cascade of information propagation by classifying image patches at different resolutions and cascading (segments) superpixels . System components consist of the following: (1) decomposing CT slice images as a set of disjoint boundary-preserving superpixels; (2) computing pancreas class probability maps via dense patch labeling; (3) classifying superpixels by pooling both intensity and probability features to form empirical statistics in cascaded random forest frameworks; and (4) simple connectivity based post-processing. Evaluation of the approach is conducted on a database of 80 manually segmented CT volumes in sixfold cross validation. Our achieved results are comparable, or better to the state-of-the-art methods (evaluated by “leave-one-patient-out”), with a Dice coefficient of \(70.7\%\) and Jaccard Index of \(57.9\%\). The computational efficiency of the proposed approach is drastically improved in the order of 6–8 min, compared to other methods of \({\ge }10\) hours per testing case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ics.uci.edu/~ihler/code/kde.html.

  2. 2.

    The axial reconstruction CT scans in our study have largely varying ranges or extends in the z-axis. If some anatomical landmarks, such as the bottom plane of liver, the center of kidneys, can be provided automatically, the anatomically normalized z-coordinate positions for superpixels can be computed and used as an additional spatial feature for RF classification.

  3. 3.

    https://code.google.com/p/cuda-convnet2.

References

  1. Cuingnet R, Prevost R, Lesage D, Cohen L, Mory B, Ardon R (2012) Automatic detection and segmentation of kidneys in 3d CT images using random forests. In: MICCAI, pp 66–74

    Google Scholar 

  2. Mansoor A, Bagci U, Xu Z, Foster B, Olivier K, Elinoff J, Suffredini A, Udupa J, Mollura D (2014) A generic approach to pathological lung segmentation. IEEE Trans Med Imaging 33(12):2293–2310

    Article  Google Scholar 

  3. Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3d cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27(11):1668–1681

    Article  Google Scholar 

  4. Ling H, Zhou S, Zheng Y, Georgescu B, Suehling M, Comaniciu D (2008) Hierarchical, learning-based automatic liver segmentation. In: IEEE conference on CVPR, pp 1–8

    Google Scholar 

  5. Shimizu A, Kimoto T, Kobatake H, Nawano S, Shinozaki K (2010) Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography. Int J Comput Assist Radiol Surg 5(1):85–98

    Article  Google Scholar 

  6. Okada T, Linguraru M, Yoshida Y, Hor M, Summers R, Chen Y, Tomiyama N, Sato Y (2012) Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. In: Abdominal imaging - computational and clinical applications, pp 173–180

    Google Scholar 

  7. Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging 32(7):1723–1730

    Article  Google Scholar 

  8. Chu C, Oda M, Kitasaka T, Misawa K, Fujiwara M, Hayashi Y, Nimura Y, Rueckert D, Mori K (2013) Multi-organ segmentation based on spatially-divided probabilistic atlas from 3d abdominal CT images. In: MICCAI, vol 2, pp 165–172

    Google Scholar 

  9. Wolz R, Chu C, Misawa K, Mori K, Rueckert D (2012) Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases. In: MICCAI, vol 1, pp 10–17

    Google Scholar 

  10. Wang Z, Bhatia K, Glocker B, Marvao A, Dawes T, Misawa K, Mori K, Rueckert D (2014) Geodesic patch-based segmentation. In: MICCAI, vol 1, pp 666–673

    Google Scholar 

  11. Modat M, McClelland J, Ourselin S (2010) Lung registration using the niftyreg package. In: Medical image analysis for the clinic-a grand challenge, pp 33–42

    Google Scholar 

  12. Wang H, Suh J, Das S, Pluta J, Craige C, Yushkevich P (2012) Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell 35(3):611–623

    Article  Google Scholar 

  13. Zografos V, Menze B, Tombari F (2015) Hierarchical multi-organ segmentation without registration in 3d abdominal CT images. In: MICCAI medical computer vision workshop

    Google Scholar 

  14. Lucchi A, Smith K, Achanta R, Knott G, Fua P (2012) Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans Med Imaging 31(2):474–486

    Article  Google Scholar 

  15. Lu L, Wu D, Lay N, Liu D, Nogues I, Summers R (2016) Accurate 3d bone segmentation in challenging CT images: bottom-up parsing and contextualized optimization. In: IEEE conference on WACV, pp 1–10

    Google Scholar 

  16. Lu L, Barbu A, Wolf M, Liang J, Bogoni L, Salganicoff M, Comaniciu D (2008) Simultaneous detection and registration for ileo-cecal valve detection in 3d CT colonography. In: European conference on computer vision. Springer, Berlin, pp 465–478

    Google Scholar 

  17. Liu M, Lu L, Ye X, Yu S, Huang H (2011) Coarse-to-fine classification using parametric and nonparametric models for computer-aided diagnosis. In: 20th ACM conference on information and knowledge management

    Google Scholar 

  18. Lu L, Devarakota P, Vikal S, Wu D, Zheng Y, Wolf M (2013) Computer aided diagnosis using multilevel image features on large-scale evaluation. In: Medical computer vision-MICCAI. Springer, Berlin, pp 161–174

    Google Scholar 

  19. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Google Scholar 

  20. Neubert P, Protzel P (2012) Superpixel benchmark and comparison. In: Proceedings of the forum Bildverarbeitung, pp 1–12

    Google Scholar 

  21. Liu M, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation. In: IEEE conference on CVPR, pp 2099–2104

    Google Scholar 

  22. Felzenszwalb P, Huttenlocher D (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  23. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598

    Google Scholar 

  24. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Google Scholar 

  25. Cour T, Benezit F, Shi J (2005) Spectral segmentation with multiscale graph decomposition. In: IEEE proceedings on CVPR

    Google Scholar 

  26. Kohlberger T, Sofka M, Zhang J, Birkbeck N, Wetzl J, Kaftan J, Declerck J, Zhou S (2011) Automatic multi-organ segmentation using learning-based segmentation and level set optimization. In: MICCAI, vol 3, pp 338–345

    Google Scholar 

  27. Vedaldi A, Fulkerson B (2008) VLFeat: an open and portable library of computer vision algorithms. http://www.vlfeat.org/

  28. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  29. Gilinsky A, Zelnik-Manor L (2013) Siftpack: a compact representation for efficient sift matching. In: IEEE conference on ICCV, pp 777–784

    Google Scholar 

  30. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  31. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  32. Gao M, Bagci U, Lu L, Wu A, Buty M, Shin H-C, Roth H, Papadakis GZ, Depeursinge A, Summers RM et al (2016) Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput Methods Biomech Biomed Eng: Imaging Vis 1–6

    Google Scholar 

  33. Roth H, Lu L, Farag A, Shin H, Liu J, Turkbey E, Summers R (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI, pp 556–564

    Google Scholar 

  34. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE conference on CVPR, pp 580–587

    Google Scholar 

  35. Groeneveld R, Meeden G (1984) Measuring skewness and kurtosis. Stat 33:391–399

    Google Scholar 

  36. Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  37. Everingham M, Eslami S, Van Gool L, Williams C, Winn J, Zisserman A (2015) The pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136

    Article  Google Scholar 

  38. Carreira J, Sminchisescu C (2012) CPMC: automatic object segmentation using constrained parametric min-cuts. IEEE Trans Pattern Anal Mach Intell 34(7):1312–1328

    Google Scholar 

  39. Roth H, Farag A, Lu L, Turkbey E, Liu J, Summers R (2015) Deep convolutional networks for pancreas segmentation in CT imaging. In: SPIE conference on medical imaging, pp 1–8

    Google Scholar 

  40. Carreira J, Caseiro R, Batista J, Sminchisescu C (2012) Semantic segmentation with second-order pooling. In: European conference on computer vision, pp 430–443

    Google Scholar 

  41. Chatfield K, Lempitsky V, Vedaldi A, Zisserman A (2011) The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC, pp 1–12

    Google Scholar 

  42. Girshick R, Donahue J, Darrell T, Malik J (2015) Region-based convolutional networks for accurate object detection and semantic segmentation. IEEE Trans Pattern Anal Mach Intell, to appear

    Google Scholar 

  43. Mostajabi M, Yadollahpour P, Shakhnarovich G (2015) Feedforward semantic segmentation with zoom-out features. In: IEEE conference on CVPR, pp 3376–3385

    Google Scholar 

  44. Farag A, Lu L, Liu J, Turkbey E, Summers R (2010) A bottom-up approach for automatic pancreas segmentation abdominal CT scans. In: MICCAI abdominal imaging workshop

    Google Scholar 

  45. Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille A (2015) Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: International conference on learning representation

    Google Scholar 

  46. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: MICCAI, pp 234–241

    Google Scholar 

  47. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE conference on CVPR, pp 3431–3440

    Google Scholar 

  48. Krhenbhl P, Koltun V (2011) Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS, pp 109–117

    Google Scholar 

  49. Dollr P, Zitnick L (2015) Fast edge detection using structured forests. IEEE Trans Pattern Anal Mach Intell 37:1558–1570

    Google Scholar 

  50. Arbelez P, Pont-Tuset J, Barron J, Marqus F, Malik J (2014) Multiscale combinatorial grouping. In: IEEE conference on CVPR, pp 328–335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farag, A., Lu, L., Roth, H.R., Liu, J., Turkbey, E., Summers, R.M. (2017). Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling. In: Lu, L., Zheng, Y., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Image Computing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-42999-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42999-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42998-4

  • Online ISBN: 978-3-319-42999-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics