Abstract
Verification of PCTL properties of MDPs with convex uncertainties has been investigated recently by Puggelli et al. However, model checking algorithms typically suffer from the state space explosion problem. In this paper, we discuss the use of probabilistic bisimulation to reduce the size of such an MDP while preserving the PCTL properties it satisfies. As a core part, we show that deciding bisimilarity of a pair of states can be encoded as adjustable robust counterpart of an uncertain LP. We show that using affine decision rules, probabilistic bisimulation relation can be approximated in polynomial time. We have implemented our approach and demonstrate its effectiveness on several case studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Here, \(\mathcal {B}\) is the standard \(\sigma \)-algebra over \( Paths ^{\omega }\) generated from the set of all cylinder sets \(\{ Cyl _{\pi } \mid \pi \in Paths ^{*}\}\). The unique probability measure is obtained by the application of the extension theorem (see, e.g., [11]).
References
Gurobi 4.0.2. http://www.gurobi.com/
IBM ILOG CPLEX Optimizer. http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
PICOS: A Python interface for conic optimization solvers. http://picos.zib.de/
PRISM model checker. http://www.prismmodelchecker.org/
Abate, A., El Ghaoui, L.: Robust model predictive control through adjustable variables: an application to path planning. In: CDC, pp. 2485–2490 (2004)
Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)
Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)
Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)
Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013)
Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)
Billingsley, P.: Probability and Measure. Wiley, New York (1979)
Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–385. Springer, Heidelberg (2002)
Cattani, S., Segala, R., Kwiatkowska, M., Norman, G.: Stochastic transition systems for continuous state spaces and non-determinism. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 125–139. Springer, Heidelberg (2005)
Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking \(\omega \)-regular properties of interval Markov chains. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 302–317. Springer, Heidelberg (2008)
Chen, T., Han, T., Kwiatkowska, M.: On the complexity of model checking interval-valued discrete time Markov chains. Inf. Process. Lett. 113(7), 210–216 (2013)
Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance prediction of compositional models in industrial GALS designs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009)
Dantzig, G.B., Madansky, A.: On the solution of two-stage linear programs under uncertainty. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. pp. 165–176 (1961)
Delahaye, B., Katoen, J.P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wasowski, A.: New results on abstract probabilistic automata. In: ACSD, pp. 118–127 (2011)
Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wąsowski, A.: Decision problems for interval Markov chains. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 274–285. Springer, Heidelberg (2011)
Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)
Ferrer Fioriti, L.M., Hashemi, V., Hermanns, H., Turrini, A.: Deciding probabilistic automata weak bisimulation: theory and practice. Form. Asp. Comput. 28(1), 109–143 (2016)
Gebler, D., Hashemi, V., Turrini, A.: Computing behavioral relations for probabilistic concurrent systems. In: Remke, A., Stoelinga, M. (eds.) Stochastic Model Checking. LNCS, vol. 8453, pp. 117–155. Springer, Heidelberg (2014)
Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter Markov decision processes. Artif. Intell. 122(1–2), 71–109 (2000)
Goerigk, M.: ROPI-a robust optimization programming interface for C++. Optim. Methods Softw. 29(6), 1261–1280 (2014)
Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)
Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011)
Hashemi, V., Hatefi, H., Krčál, J.: Probabilistic bisimulations for PCTL model checking of interval MDPs (extended version). In: SynCoP. EPTCS, vol. 145, pp. 19–33 (2014)
Hashemi, V., Hermanns, H., Song, L., Subramani, K., Turrini, A., Wojciechowski, P.: Compositional bisimulation minimization for interval Markov decision processes. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 114–126. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30000-9_9
Hermanns, H., Katoen, J.P.: Automated compositional Markov chain generation for a plain-old telephone system. Sci. Comput. Program. 36(1), 97–127 (2000)
Iyengar, G.N.: Robust dynamic programming. Math. Oper. Res. 30(2), 257–280 (2005)
Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277 (1991)
Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems of equivalence. Inf. Comput. 86(1), 43–68 (1990)
Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)
Khachyan, L.G.: A polynomial algorithm in linear programming. Sov. Math. Doklady 20(1), 191–194 (1979)
Kozine, I., Utkin, L.V.: Interval-valued finite Markov chains. Reliable Comput. 8(2), 97–113 (2002)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)
Löfberg, J.: Automatic robust convex programming. Optim. Methods Softw. 17(1), 115–129 (2012)
Nilim, A., El Ghaoui, L.: Robust control of Markov decision processes with uncertain transition matrices. Oper. Res. 53(5), 780–798 (2005)
Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)
Puggelli, A.: Formal techniques for the verification and optimal control of probabilistic systems in the presence of modeling uncertainties. Ph.D. thesis, University of California, Berkeley (2014)
Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg (2013)
Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, MIT (1995)
Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–410. Springer, Heidelberg (2006)
Turrini, A., Hermanns, H.: Polynomial time decision algorithms for probabilistic automata. Inf. Comput. 244, 134–171 (2015)
Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain Markov decision processes with temporal logic specifications. In: CDC, pp. 3372–3379 (2012)
Wu, D., Koutsoukos, X.D.: Reachability analysis of uncertain systems using bounded-parameter Markov decision processes. Artif. Intell. 172(8–9), 945–954 (2008)
Yi, W.: Algebraic reasoning for real-time probabilistic processes with uncertain information. Formal Techniques in Real-Time and Fault-Tolerant Systems. LNCS, vol. 863, pp. 680–693. Springer, Heidelberg (1994)
Acknowledgments
We would like to thank Arkadi Nemirovski (Georgia Institute of Technology) and Daniel Kuhn (EPFL) for many invaluable and insightful discussions. This work is supported by the EU 7th Framework Programme under grant agreements 295261 (MEALS) and 318490 (SENSATION), by the DFG as part of SFB/TR 14 AVACS, by the ERC Advanced Investigators Grant 695614 (POWVER), by the CAS/SAFEA International Partnership Program for Creative Research Teams, by the National Natural Science Foundation of China (Grants No. 61472473, 61532019, 61550110249, 61550110506), by the Chinese Academy of Sciences Fellowship for International Young Scientists, and by the CDZ project CAP (GZ 1023).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Hahn, E.M., Hashemi, V., Hermanns, H., Turrini, A. (2016). Exploiting Robust Optimization for Interval Probabilistic Bisimulation. In: Agha, G., Van Houdt, B. (eds) Quantitative Evaluation of Systems. QEST 2016. Lecture Notes in Computer Science(), vol 9826. Springer, Cham. https://doi.org/10.1007/978-3-319-43425-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-43425-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-43424-7
Online ISBN: 978-3-319-43425-4
eBook Packages: Computer ScienceComputer Science (R0)