Skip to main content

Power Efficiency-Based Stiffness Optimization of a Compliant Actuator for Underactuated Bipedal Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9834))

Included in the following conference series:

Abstract

Introducing compliant actuation to robotic joints can obtain better disturbance rejection performance and higher power efficiency than conventional stiff actuated systems. In this paper, inspired by human joints, a novel compliant actuator applied to underactuated bipedal robot is proposed. After modeling the stiffness of the compliant actuator, this paper gives the configuration of the bipedal robot actuated by compliant actuators. Compared with the elastic structure of MABEL, the compliant element of our robot is simplified. Based on the dynamics of the compliant actuator-driven bipedal robot, a feedback linearization controller is presented to implement position control of the compliant actuator for power efficiency analysis and stiffness optimization. Co-simulations of MATLAB and ADAMS are performed under the defined control trajectory by altering actuator stiffness. The simulation results indicate that, compared with the actuator maintaining very high stiffness like a rigid actuator, the power efficiency of the compliant actuator is improved, and the stiffness optimized to 375 N•m/rad can reach the highest power efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ham, R., Sugar, T.G., Vanderborght, B., et al.: Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)

    Article  Google Scholar 

  2. Ishikawa, M., Komi, P.V., Lepola, G.V., et al.: Muscle tendon interaction and elastic energy usage in human walking. J. Appl. Physiol. 99(2), 603–608 (2005)

    Article  Google Scholar 

  3. Laffranchi, M., Tsagarakis, N. G., Cannella, F., et al.: Antagonistic and series elastic actuators: a comparative analysis on the energy consumption. In: IEEE International Conference on Intelligent Robots and Systems, St. Louis, USA, pp. 5678–5684 (2009)

    Google Scholar 

  4. Roberts, T.J., Marsh, R.L., Weyand, P.G., et al.: Muscular force in running turkeys: the economy of minimizing work. Science 275(5303), 1113–1115 (1997)

    Article  Google Scholar 

  5. Hurst, J.W.: The electric cable differential leg: a novel design approach for walking and running. Int. J. Humanoid Rob. 8(2), 301–321 (2011)

    Article  MathSciNet  Google Scholar 

  6. Li, Z., Tsagarakis, N.G., Caldwell, D.G.: A passivity based admittance control for stabilizing the compliant humanoid COMAN. In: IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan, pp. 44–49 (2012)

    Google Scholar 

  7. Ham, R.V., Vanderborght, B., Damme, M.V., et al.: MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot. Auton. Syst. 55(10), 761–768 (2007)

    Article  Google Scholar 

  8. Tsagarakis, N.G., Morfey, S., Cerda, G.M., et al.: Compliant humanoid coman: optimal joint stiffness tuning for modal frequency control. In: IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 673–678 (2013)

    Google Scholar 

  9. Grizzle, J.W., Chevallereau, C., Sinnet, R.W., et al.: Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica 50(8), 1955–1988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Collins, S., Ruina, A., Tedrake, R., et al.: Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)

    Article  Google Scholar 

  11. Chevallereau, C., Gabriel, A., Aoustin, Y., et al.: Rabbit: a testbed for advanced control theory. IEEE Control Syst. Mag. 23(5), 57–79 (2003)

    Article  Google Scholar 

  12. Grizzle, J., Hurst, J., Morris, B., et al.: MABEL, a new robotic bipedal walker and runner. In: American Control Conference, St. Louis, USA, pp. 2030–2036 (2009)

    Google Scholar 

  13. Yadukumar, S.N., Pasupuleti, M., Ames, A.D.: Human-inspired underactuated bipedal robotic walking with AMBER on flat-ground, upslope and uneven terrain. In: IEEE/RSJ International Conference on Intelligent Robots and System, Vilamoura, Portugal, pp. 2478–2483 (2012)

    Google Scholar 

  14. Sreenath, K., Park, H.W., Poulakakis, I., et al.: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30(9), 1170–1193 (2011)

    Article  Google Scholar 

  15. Isidori, A.: Nonlinear Control Systems. Springer Science and Business Media, London (2013)

    Google Scholar 

  16. Luca, A.D., Farina, R., Lucibello, P.: On the control of robots with visco-elastic joints. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 4297–4302 (2005)

    Google Scholar 

  17. Wang, Y., Ding, J., Xiao, X.: Periodic stability for 2-D biped dynamic walking on compliant ground. In: International Conference on Intelligent Robotics and Applications, Portsmouth, UK, pp. 369–380 (2015)

    Google Scholar 

Download references

Acknowledgment

This research is sponsored by National Natural Science Foundation of China (NSFC, Grant No. 51175383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Q., Xiao, X., Guo, Z. (2016). Power Efficiency-Based Stiffness Optimization of a Compliant Actuator for Underactuated Bipedal Robot. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds) Intelligent Robotics and Applications. ICIRA 2016. Lecture Notes in Computer Science(), vol 9834. Springer, Cham. https://doi.org/10.1007/978-3-319-43506-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43506-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43505-3

  • Online ISBN: 978-3-319-43506-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics