Skip to main content

A Neural Hysteresis Model for Smart-Materials-Based Actuators

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9834))

Included in the following conference series:

  • 2669 Accesses

Abstract

In this paper, a constraint factor (CF) is presented. The CF and an odd m-order polynomial form a new hysteretic operator (HO) together. And then, an expanded input space is constructed based on the proposed HO. In the expanded input and output spaces, the one-to-multiple mapping of hysteresis is transformed into a one-to-one mapping so that a neural network can be used to develop a neural hysteresis model. The model parameters are computed by using the least square method. Finally, the neural hysteresis model is employed to approximate a real data from a magnetostrictive actuator in an experiment. The experimental results demonstrate the proposed approach is effective.

This work is supported in part by National Natural Science Foundation of China (Grant nos. 11304282, 61540034, 61304015, and 61273184); Zhejiang Provincial Natural Science Foundation (Grant nos. LQ14F050002, LQ16F030002, and LY15F030022); Science Technology Department of Zhejiang Province (Grant no. 2014C31020); Pre-research Special Foundation for Interdisciplinary Subject at Zhejiang University of Science and Technology (Grant no. 2014JC03Y).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z., Su, C.Y., Chai, T.: Compensation of hysteresis nonlinearity in magnetostrictive actuators with inverse multiplicative structure for Preisach model. IEEE Trans. Autom. Sci. Eng. 11(2), 613–619 (2014)

    Article  Google Scholar 

  2. Chen, X., Feng, Y., Su, C.Y.: Adaptive control for continuous-time systems with actuator and sensor hysteresis. Automatica 64, 196–207 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhu, Y., Ji, L.: Theoretical and experimental investigations of the temperature and thermal deformation of a giant magnetostrictive actuator. Sens. Actuators A Phys. 218, 167–178 (2014)

    Article  Google Scholar 

  4. Li, Z., Su, C.Y., Chen, X.: Modeling and inverse adaptive control of asymmetric hysteresis systems with applications to magnetostrictive actuator. Control Eng. Pract. 33, 148–160 (2014)

    Article  Google Scholar 

  5. Gu, G.Y., Li, Z., Zhu, L.M., et al.: A comprehensive dynamic modeling approach for giant magnetostrictive material actuators. Smart Mater. Struct. 22(12), 125005 (2013)

    Article  MathSciNet  Google Scholar 

  6. Liu, S., Su, C.Y., Li, Z.: Robust adaptive inverse control of a class of nonlinear systems with Prandtl-Ishlinskii hysteresis model. IEEE Trans. Autom. Control 59(8), 2170–2175 (2014)

    Article  MathSciNet  Google Scholar 

  7. Macki, J.W., Nistri, P., Zecca, P.: Mathematical models for hysteresis. SIAM Rev. 35(1), 94–123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Krasnosel’skii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, New York (1989)

    Book  MATH  Google Scholar 

  9. Mayergoyz, I.D.: Mathematical models of hysteresis. IEEE Trans. Magn. 22(5), 603–608 (1986)

    Article  MATH  Google Scholar 

  10. Ferretti, G., Magnani, G., Rocco, P.: Single and multistate integral friction models. IEEE Trans. Autom. Control 49(12), 2292–2297 (2004)

    Article  MathSciNet  Google Scholar 

  11. Jiles, D., Atherton, D.: Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 61(1–2), 48–60 (1986)

    Article  Google Scholar 

  12. Duhem, P.: Die dauernden Aenderungen und die Thermodynamik. Z. Phys. Chem. 22, 543–589 (1879)

    Google Scholar 

  13. Bouc, R.: Forced vibration of mechanical systems with hysteresis. In: Proceedings of 4th Conference on Nonlinear Oscillations (1967)

    Google Scholar 

  14. Wen, Y.K.: Method for random vibration of hysteretic systems. ASCE J. Eng. Mech. Div. 102(2), 249–263 (1976)

    Google Scholar 

  15. Wei, J.D., Sun, C.T.: Constructing hysteretic memory in neural networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 30(4), 601–609 (2000)

    Article  Google Scholar 

  16. Ma, L., Tan, Y., Chu, Y.: Improved EHM-based NN hysteresis model. Sens. Actuators A Phys. 141(1), 6–12 (2008)

    Article  Google Scholar 

  17. Zhao, X., Tan, Y.: Modeling hysteresis and its inverse model using neural networks based on expanded input space method. IEEE Trans. Control Syst. Technol. 16(3), 484–490 (2008)

    Article  MathSciNet  Google Scholar 

  18. Dong, R., Tan, Y., Chen, H., et al.: A neural networks based model for rate-dependent hysteresis for piezoceramic actuators. Sens. Actuators A Phys. 143(2), 370–376 (2008)

    Article  Google Scholar 

  19. Zhang, X., Tan, Y., Su, M., et al.: Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators. Phys. B 405(12), 2687–2693 (2010)

    Article  Google Scholar 

  20. Ma, L., Shen, Y., Li, J., et al.: A modified HO-based model of hysteresis in piezoelectric actuators. Sens. Actuators A Phys. 220, 316–322 (2014)

    Article  Google Scholar 

  21. Ma, L., Shen, Y.: A neural model of hysteresis in amorphous materials and piezoelectric materials. Appl. Phys. A 116(2), 715–722 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwei Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Shen, Y., Ma, L., Li, J., Zhang, X., Zhao, X., Zheng, H. (2016). A Neural Hysteresis Model for Smart-Materials-Based Actuators. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds) Intelligent Robotics and Applications. ICIRA 2016. Lecture Notes in Computer Science(), vol 9834. Springer, Cham. https://doi.org/10.1007/978-3-319-43506-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43506-0_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43505-3

  • Online ISBN: 978-3-319-43506-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics