Abstract
This work presents a dynamic controller for a robotic wheelchair, that allows people with lower and upper extremity impairments to move through of brain signals. The person receives visual feedback of the movement of the robot and it sends desired position-velocity commands through of the Emotiv EPOC device. The desired velocity of the wheelchair is considered as a function of the disregard of the person to move the robotic wheelchair. Additionally, the kinematic and dynamic modeling of a human-wheelchair system where it is considered that its mass center is not located at the wheels’ axis center of the wheelchair. Finally, the results are reported to verify the performance of the proposed system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bastos-Filho, T.F.: Towards a new modality independent interface for a robotic wheelchair. IEEE Trans. Neural Syst. Rehabil. Eng. 22(3), 567–584 (2014)
Wang, Y., Chen, W.: Hybrid map-based navigation for intelligent wheelchair. In: IEEE International Conference on Robotics and Automation, China, pp. 637–642 (2011)
Andaluz, V.H., Ortiz, J.S., Sanchéz, J.S.: Bilateral control of a robotic arm through brain signals. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 355–368. Springer, Heidelberg (2015)
Mazo, M.: An integral system for assisted mobility. IEEE Robot. Autom. Mag. 8(1), 46–56 (2001)
Zeng, Q., Teo, C., Rebsamen, B., Burdet, E.: A collaborative wheelchair system. IEEE Trans. Neural Syst. Rehabil. Eng. 16(2), 161–170 (2008)
Parikh, S.P., Grassi, V., Kumar, V., Okamoto, J.: Integrating human inputs with autonomous behaviors on an intelligent wheelchair platform. IEEE Intell. Syst. 22(2), 33–41 (2007)
Biswas, K., Mazumder, O., Kundu, A.S.: Multichannel fused EMG based biofeedback system with virtual reality for gait rehabilitation. In: IEEE Proceedings in International Conference on Intelligent Human Computer Interaction, India (2012)
Hirche, S., Buss, M.: Human-oriented control for haptic teleoperation. Proc. IEEE 100(3), 623–647 (2012)
Emotiv Systems Electronics Company. http://emotiv.com/
Jang, W.A., Lee, S.M., Lee, D.H.: Development BCI for individuals with severely disability using EMOTIV EEG headset and robot. In: 2014 International Winter Workshop on Brain-Computer Interface (BCI) (2014)
Enache, A., Cepisca, C., Paraschiv, M., Banica, C.: Virtual instrument for electroencephalography data acquisition. In: 7th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 1–4 (2011)
Huang, D., Qian, K., Fei, D.-Y., Jia, W.: Electroencephalography (EEG)-based Brain-Computer Interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 379–388 (2011)
Sapey, B., Stewart, J., Donaldson, G.: Increases in wheelchair use and perceptions of disablement. Disabil. Soc. 20(5), 489–505 (2005)
Andaluz, V.H., Canseco, P., Varela, J., Ortiz, J.S., Pérez, M.G., Roberti, F., Carelli, R.: Robust control with dynamic compensation for human-wheelchair system. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds.) ICIRA 2014, Part I. LNCS, vol. 8917, pp. 376–389. Springer, Heidelberg (2014)
Andaluz, V.H., Canseco, P., Varela, J., Ortiz, J.S., Pérez, M.G., Morales, V., Robertí, F., Carelli, R.: Modeling and control of a wheelchair considering center of mass lateral displacements. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R. (eds.) ICIRA 2015. LNCS, vol. 9246, pp. 254–270. Springer, Heidelberg (2015)
Acknowledgment
The authors would like to thanks to the Universidad Técnica de Ambato for financing the project Robotic Assistance for Persons with Disabilities (Resolution: 1151-CU-P-2012). Also to the Universidad de las Fuerzas Armadas ESPE and to the Escuela Superior Politécnica de Chimborazo for the support to develop of the Master’s Thesis Control de una silla de ruedas a través de señales cerebrales.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Ortiz, J.S., Andaluz, V.H., Rivas, D., Sánchez, J.S., Espinosa, E.G. (2016). Human-Wheelchair System Controlled by Through Brain Signals. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds) Intelligent Robotics and Applications. ICIRA 2016. Lecture Notes in Computer Science(), vol 9835. Springer, Cham. https://doi.org/10.1007/978-3-319-43518-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-43518-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-43517-6
Online ISBN: 978-3-319-43518-3
eBook Packages: Computer ScienceComputer Science (R0)