Skip to main content

Potential for Automated Systems to Monitor Drying of Agricultural Products Using Optical Scattering

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9835))

Included in the following conference series:

  • 1617 Accesses

Abstract

Drying of agricultural products is a critical and energy-intensive processing step in the production of many foodstuffs. During convective drying, products are highly susceptible to thermal damage. In recent years, novel techniques have been established based on optical scattering due to the interaction of light with organic materials. The presented research investigated this approach using vis/NIR wavelengths to observe changes of quality parameters during drying of foodstuffs. The method was proven useful to monitor changes in moisture, color, and texture in a variety of products such as apple, mango, papaya, litchi, and bell pepper. Although many applications have been confirmed, additional hardware and software aspects still need to be refined. Optical scattering shows strong potential for implementation as a non-destructive method for in-line control of product qualities during industrial drying processes. A robotic prototype should be developed that is capable of automated measurement of agricultural products during drying. Optimization of product quality and prevention of energy waste by over-drying are among the potential impacts of the developed technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMinn, W.A.M., Magee, T.R.A.: Principles, methods and applications of the convective drying of foodstuffs. Food Bioprod. Process. 77, 175–193 (1999)

    Article  Google Scholar 

  2. Kim, S., Park, J., Hwang, I.: Composition of main carotenoids in Korean red pepper (Capsicum annuum, L) and changes of pigment stability during the drying and storage process. J. Food Sci. 69, FCT39–FCT44 (2004)

    Article  Google Scholar 

  3. Mahayothee, B., Udomkun, P., Nagle, M., Haewsungcharoen, M., Janjai, S., Müller, J.: Effects of pretreatments on colour alterations of litchi during drying and storage. Eur. Food Res. Technol. 229, 329–337 (2009)

    Article  Google Scholar 

  4. Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., Perez-Won, M.: Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chem. 117, 647–653 (2009)

    Article  Google Scholar 

  5. Lewicki, P.P.: Effect of pre-drying treatment, drying and rehydration on plant tissue properties: a review. Int. J. Food Prop. 1, 1–22 (1998)

    Article  Google Scholar 

  6. Arabhosseini, A., Huisman, W., Van Boxtel, A., Müller, J.: Modeling of thin layer drying of tarragon (Artemisia dracunculus L.). Ind. Crops Prod. 29, 53–59 (2009)

    Article  Google Scholar 

  7. Fernandes, F.A., Rodrigues, S., Law, C.L., Mujumdar, A.S.: Drying of exotic tropical fruits: a comprehensive review. Food Bioprocess Technol. 4, 163–185 (2011)

    Article  Google Scholar 

  8. Müller, J.: Convective drying of medicinal, aromatic and spice plants: a review. Stewart Postharvest Rev. 3, 1–6 (2007)

    Article  Google Scholar 

  9. Connolly, C.: NIR spectroscopy for foodstuff monitoring. Sens. Rev. 25, 192–194 (2005)

    Article  Google Scholar 

  10. Nicolai, B.M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K.I., Lammertyn, J.: Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol. Technol. 46, 99–118 (2007)

    Article  Google Scholar 

  11. Roy, S., Anantheswaran, R.C., Shenk, J.S., Westerhaus, M.O., Beelman, R.B.: Determination of moisture content of mushrooms by Vis—NIR spectroscopy. J. Sci. Food Agric. 63, 355–360 (1993)

    Article  Google Scholar 

  12. Kawamura, S., Natsuga, M., Takekura, K., Itoh, K.: Development of an automatic rice-quality inspection system. Comput. Electron. Agric. 40, 115–126 (2003)

    Article  Google Scholar 

  13. De Temmerman, J., Saeys, W., Nicolaï, B., Ramon, H.: Near infrared reflectance spectroscopy as a tool for the in-line determination of the moisture concentration in extruded semolina pasta. Biosyst. Eng. 97, 313–321 (2007)

    Article  Google Scholar 

  14. Sinelli, N., Casiraghi, E., Barzaghi, S., Brambilla, A., Giovanelli, G.: Near infrared (NIR) spectroscopy as a tool for monitoring blueberry osmo–air dehydration process. Food Res. Int. 44, 1427–1433 (2011)

    Article  Google Scholar 

  15. Qin, J., Lu, R.: Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biol. Technol. 49, 355–365 (2008)

    Article  Google Scholar 

  16. Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O.L., Blasco, J.: Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 5, 1121–1142 (2012)

    Article  Google Scholar 

  17. Birth, G.S.: The light scattering properties of foods. J. Food Sci. 43, 916–925 (1978)

    Article  Google Scholar 

  18. Adebayo, S.E., Hashim, N., Abdan, K., Hanafi, M.: Application and potential of backscattering imaging techniques in agricultural and food processing–a review. J. Food Eng. 169, 155–164 (2016)

    Article  Google Scholar 

  19. Qing, Z., Ji, B., Zude, M.: Predicting soluble solid content and firmness in apple fruit by means of laser light backscattering image analysis. J. Food Eng. 82, 58–67 (2007)

    Article  Google Scholar 

  20. Qing, Z., Ji, B., Zude, M.: Non-destructive analyses of apple quality parameters by means of laser-induced light backscattering imaging. Postharvest Biol. Technol. 48, 215–222 (2008)

    Article  Google Scholar 

  21. Tu, K., Jancsók, P., Nicolaï, B., De Baerdemaeker, J.: Use of laser-scattering imaging to study tomato-fruit quality in relation to acoustic and compression measurements. Int. J. Food Sci. Technol. 35, 503–510 (2000)

    Article  Google Scholar 

  22. De Belie, N., Tu, K., Jancsok, P., De Baerdemaeker, J.: Preliminary study on the influence of turgor pressure on body reflectance of red laser light as a ripeness indicator for apples. Postharvest Biol. Technol. 16, 279–284 (1999)

    Article  Google Scholar 

  23. Lu, R.: Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biol. Technol. 31, 147–157 (2004)

    Article  Google Scholar 

  24. Lu, R., Ariana, D.: A near-infrared sensing technique for measuring internal quality of apple fruit. Appl. Eng. Agric. 18, 585 (2002)

    Google Scholar 

  25. Qin, J., Lu, R.: Monte Carlo simulation for quantification of light transport features in apples. Comput. Electron. Agric. 68, 44–51 (2009)

    Article  Google Scholar 

  26. Peng, Y., Lu, R.: Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. J. Food Eng. 82, 142–152 (2007)

    Article  Google Scholar 

  27. Peng, Y., Lu, R.: Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 48, 52–62 (2008)

    Article  Google Scholar 

  28. Janjai, S., Mahayothee, B., Lamlert, N., Bala, B.K., Precoppe, M.F., Nagle, M., Müller, J.: Diffusivity, shrinkage and simulated drying of litchi fruit (Litchi chinensis Sonn.). J. Food Eng. 96, 214–221 (2010)

    Article  Google Scholar 

  29. Talla, A., Puiggali, J.-R., Jomaa, W., Jannot, Y.: Shrinkage and density evolution during drying of tropical fruits: application to banana. J. Food Eng. 64, 103–109 (2004)

    Article  Google Scholar 

  30. Zogzas, N., Maroulis, Z., Marinos-Kouris, D.: Densities, shrinkage and porosity of some vegetables during air drying. Drying Technol. 12, 1653–1666 (1994)

    Article  Google Scholar 

  31. Torricelli, A., Spinelli, L., Contini, D., Vanoli, M., Rizzolo, A., Zerbini, P.E.: Time-resolved reflectance spectroscopy for non-destructive assessment of food quality. Sens. Instrum. Food Qual. Saf. 2, 82–89 (2008)

    Article  Google Scholar 

  32. Argyropoulos, D., Heindl, A., Müller, J.: Assessment of convection, hot-air combined with microwave-vacuum and freeze-drying methods for mushrooms with regard to product quality. Int. J. Food Sci. Technol. 46, 333–342 (2011)

    Article  Google Scholar 

  33. Baranyai, L., Zude, M.: Analysis of laser light propagation in kiwifruit using backscattering imaging and Monte Carlo simulation. Comput. Electron. Agric. 69, 33–39 (2009)

    Article  Google Scholar 

  34. Romano, G., Argyropoulos, D., Gottschalk, K., Cerruto, E., Müller, J.: Influence of colour changes and moisture content during banana drying on laser backscattering. Int. J. Agric. Biol. Eng. 3, 46–51 (2010)

    Google Scholar 

  35. Romano, G., Nagle, M., Argyropoulos, D., Müller, J.: Laser light backscattering to monitor moisture content, soluble solid content and hardness of apple tissue during drying. J. Food Eng. 104, 657–662 (2011)

    Article  Google Scholar 

  36. Romano, G., Argyropoulos, D., Nagle, M., Khan, M.T., Müller, J.: Combination of digital images and laser light to predict moisture content and color of bell pepper simultaneously during drying. J. Food Eng. 109, 438–448 (2012)

    Article  Google Scholar 

  37. Udomkun, P., Nagle, M., Mahayothee, B., Müller, J.: Laser-based imaging system for non-invasive monitoring of quality changes of papaya during drying. Food Control 42, 225–233 (2014)

    Article  Google Scholar 

  38. Romano, G., Nagle, M., Müller, J.: Two-parameter Lorentzian distribution for monitoring physical parameters of golden colored fruits during drying by application of laser light in the Vis/NIR spectrum. Innov. Food Sci. Emerg. Technol. 33, 498–505 (2016)

    Article  Google Scholar 

  39. Du, C.-J., Sun, D.-W.: Learning techniques used in computer vision for food quality evaluation: a review. J. Food Eng. 72, 39–55 (2006)

    Article  Google Scholar 

  40. Al Ohali, Y.: Computer vision based date fruit grading system: design and implementation. J. King Saud Univ. Comput. Info. Sci. 23, 29–36 (2011)

    Google Scholar 

  41. Schulze, K., Nagle, M., Spreer, W., Mahayothee, B., Müller, J.: Development and assessment of different modeling approaches for size-mass estimation of mango fruits (Mangifera indica L., cv. ‘Nam Dokmai’). Comput. Electron. Agric. 114, 269–276 (2015)

    Article  Google Scholar 

  42. Mendoza, F., Aguilera, J.M.: Application of image analysis for classification of ripening bananas. J. Food Sci. 69, E471–E477 (2004)

    Article  Google Scholar 

  43. Blasco, J., Cubero, S., Gómez-Sanchís, J., Mira, P., Moltó, E.: Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision. J. Food Eng. 90, 27–34 (2009)

    Article  Google Scholar 

  44. Vélez Rivera, N., Gómez-Sanchis, J., Chanona-Pérez, J., Carrasco, J.J., Millán-Giraldo, M., Lorente, D., Cubero, S., Blasco, J.: Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosystems Eng. 122, 91–98 (2014)

    Article  Google Scholar 

  45. Fukuda, S., Yasunaga, E., Nagle, M., Yuge, K., Sardsud, V., Spreer, W., Müller, J.: Modelling the relationship between peel colour and the quality of fresh mango fruit using Random Forests. J. Food Eng. 131, 7–17 (2014)

    Article  Google Scholar 

  46. Du, C.-J., Sun, D.-W.: Multi-classification of pizza using computer vision and support vector machine. J. Food Eng. 86, 234–242 (2008)

    Article  Google Scholar 

  47. Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sun, D.-W., Menesatti, P.: Shape analysis of agricultural products: a review of recent research advances and potential application to computer vision. Food Bioprocess Technol. 4, 673–692 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Nagle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nagle, M., Romano, G., Udomkun, P., Argyropoulos, D., Müller, J. (2016). Potential for Automated Systems to Monitor Drying of Agricultural Products Using Optical Scattering. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds) Intelligent Robotics and Applications. ICIRA 2016. Lecture Notes in Computer Science(), vol 9835. Springer, Cham. https://doi.org/10.1007/978-3-319-43518-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43518-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43517-6

  • Online ISBN: 978-3-319-43518-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics