Skip to main content

Multi-level Knowledge Processing in Cognitive Technical Systems

  • Chapter
  • First Online:
  • 759 Accesses

Part of the book series: Cognitive Technologies ((COGTECH))

Abstract

Companion-Systems are composed of different modules that have to share a single, sound estimate of the current situation. While the long-term decision-making of automated planning requires knowledge about the user’s goals, short-term decisions, like choosing among modes of user-interaction, depend on properties such as lighting conditions. In addition to the diverse scopes of the involved models, a large portion of the information required within such a system cannot be directly observed, but has to be inferred from background knowledge and sensory data—sometimes via a cascade of abstraction layers, and often resulting in uncertain predictions. In this contribution, we interpret an existing cognitive technical system under the assumption that it solves a factored, partially observable Markov decision process. Our interpretation heavily draws from the concepts of probabilistic graphical models and hierarchical reinforcement learning, and fosters a view that cleanly separates between inference and decision making. The results are discussed and compared to those of existing approaches from other application domains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\mathcal{P}(X)\) is the set of all probability mass functions (or density functions) over the set X.

  2. 2.

    This is also called model-free reinforcement learning, as the model has to be learned together with a policy.

References

  1. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)

    Article  Google Scholar 

  2. Åström, K.J., Kumar, P.: Control: a perspective. Automatica 50(1), 3–43 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bellman, R.: A markovian decision process. Technical Report, DTIC Document (1957)

    MATH  Google Scholar 

  4. Bercher, P., Biundo, S., Geier, T., Hoernle, T., Nothdurft, F., Richter, F., Schattenberg, B.: Plan, repair, execute, explain - how planning helps to assemble your home theater. In: Proceedings of the 24th International Conference on Automated Planning and Scheduling (ICAPS 2014), pp. 386–394. AAAI Press, Palo Alto (2014)

    Google Scholar 

  5. Bercher, P., Richter, F., Hörnle, T., Geier, T., Höller, D., Behnke, G., Nothdurft, F., Honold, F., Minker, W., Weber, M., Biundo, S.: A planning-based assistance system for setting up a home theater. In: Proceedings of the 29th National Conference on Artificial Intelligence (AAAI 2015). AAAI Press, Palo Alto (2015)

    Google Scholar 

  6. Biundo, S., Wendemuth, A.: Companion-technology for cognitive technical systems. Künstliche Intelligenz 30(1), 71–75 (2016). doi:10.1007/s13218-015-0414-8

    Article  Google Scholar 

  7. Botvinick, M.M.: Hierarchical reinforcement learning and decision making. Curr. Opin. Neurobiol. 22(6), 956–962 (2012)

    Article  Google Scholar 

  8. Boutilier, C., Dean, T.L., Hanks, S.: Decision-theoretic planning: structural assumptions and computational leverage. J. Artif. Intell. Res. (JAIR) 11, 1–94 (1999). doi:10.1613/jair.575

    Google Scholar 

  9. Brusoni, S., Marengo, L., Prencipe, A., Valente, M.: The value and costs of modularity: a cognitive perspective. SPRU Electronic Working Paper Series. SPRU, Brighton (2004)

    Google Scholar 

  10. Burns, B., Morrison, C.T.: Temporal abstraction in Bayesian networks. In: AAAI Spring Symposium. Defense Technical Information Center (2003)

    Google Scholar 

  11. Cassandra, A.R., Kaelbling, L.P., Kurien, J.: Acting under uncertainty: discrete Bayesian models for mobile-robot navigation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 1996, November 4–8, 1996, Osaka, pp. 963–972 (1996). doi:10.1109/IROS.1996.571080

    Google Scholar 

  12. Gales, M., Young, S.: The application of hidden Markov models in speech recognition. Found. Trends Signal Process. 1(3), 195–304 (2008)

    Article  MATH  Google Scholar 

  13. Gat, E.: Three-layer architectures. In: Kortenkamp, D., Peter Bonasso, R., Murphy, R.R. (eds.) Artificial Intelligence and Mobile Robots, pp. 195–210. AAAI Press (1998)

    Google Scholar 

  14. Geier, T., Biundo, S.: Approximate online inference for dynamic Markov logic networks. In: International IEEE Conference on Tools with Artificial Intelligence, pp. 764 –768 (2011)

    Google Scholar 

  15. Geier, T., Reuter, S., Dietmayer, K., Biundo, S.: Goal-based person tracking using a first-order probabilistic model. In: Proceedings of the Nineth UAI Bayesian Modeling Applications Workshop (2012)

    Google Scholar 

  16. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  17. Gosavi, A.: Reinforcement learning: a tutorial survey and recent advances. INFORMS J. Comput. 21(2), 178–192 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jain, D., Barthels, A., Beetz, M.: Adaptive Markov logic networks: learning statistical relational models with dynamic parameters. In: ECAI, pp. 937–942 (2010)

    Google Scholar 

  19. Jong, N.K., Hester, T., Stone, P.: The utility of temporal abstraction in reinforcement learning. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS’08, pp. 299–306. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2008)

    Google Scholar 

  20. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  22. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001). doi:10.1109/18.910572

    Article  MathSciNet  MATH  Google Scholar 

  23. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th International Conference on Machine Learning (2001)

    Google Scholar 

  24. Lauritzen, S.L., Richardson, T.S.: Chain graph models and their causal interpretations. J. R. Stat. Soc. Ser. B Stat. Methodol. 64(3), 321–348 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lemon, O., Cavedon, L., Kelly, B.: Managing dialogue interaction: a multi-layered approach. In: Proceedings of the 4th SIGdial Workshop on Discourse and Dialogue, pp. 168–177 (2003)

    Google Scholar 

  26. McCallum, A., Freitag, D., Pereira, F.C.N.: Maximum entropy Markov models for information extraction and segmentation. In: Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Stanford University, Stanford, CA, June 29–July 2, 2000, pp. 591–598 (2000)

    Google Scholar 

  27. Montani, S., Bottrighi, A., Leonardi, G., Portinale, L.: A CBR-based, closed-loop architecture for temporal abstractions configuration. Comput. Intell. 25(3), 235–249 (2009). doi:10.1111/j.1467-8640.2009.00340.x

    Article  MathSciNet  Google Scholar 

  28. Murphy, K.: Dynamic Bayesian networks: representation, inference and learning. Ph.D. Thesis, University of California (2002)

    Google Scholar 

  29. Nothdurft, F., Honold, F., Zablotskaya, K., Diab, A., Minker, W.: Application of verbal intelligence in dialog systems for multimodal interaction. In: 2014 International Conference on Intelligent Environments (IE), pp. 361–364. IEEE, New York (2014)

    Google Scholar 

  30. Nothdurft, F., Richter, F., Minker, W.: Probabilistic human-computer trust handling. In: 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue, p. 51 (2014)

    Google Scholar 

  31. Orphanou, K., Keravnou, E., Moutiris, J.: Integration of temporal abstraction and dynamic Bayesian networks in clinical systems. A preliminary approach. In: Jones, A.V. (ed.) 2012 Imperial College Computing Student Workshop, OpenAccess Series in Informatics (OASIcs), vol. 28, pp. 102–108. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2012). doi:http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.102

  32. Orphanou, K., Stassopoulou, A., Keravnou, E.: Temporal abstraction and temporal Bayesian networks in clinical domains: a survey. Artif. Intell. Med. 60(3), 133–149 (2014). doi:http://dx.doi.org/10.1016/j.artmed.2013.12.007

  33. Papai, T., Kautz, H., Stefankovic, D.: Slice normalized dynamic Markov logic networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1907–1915. Curran Associates, Red Hook (2012)

    Google Scholar 

  34. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  35. Pearl, J.: Causality: Models, Reasoning and Inference, vol. 29. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  36. Rafols, E., Koop, A., Sutton, R.S.: Temporal abstraction in temporal-difference networks. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 1313–1320. MIT Press, Cambridge (2006)

    Google Scholar 

  37. Reichenbach, H., Reichenbach, M.: The Direction of Time. Philosophy (University of California (Los Ángeles)). University of California Press, Berkeley (1991)

    Google Scholar 

  38. Ren, H., Xu, W., Zhang, Y., Yan, Y.: Dialog state tracking using conditional random fields. In: Proceedings of the SIGDIAL 2013 Conference, pp. 457–461. Association for Computational Linguistics, Metz (2013)

    Google Scholar 

  39. Reuter, S., Dietmayer, K.: Pedestrian tracking using random finite sets. In: Proceedings of the 14th International Conference on Information Fusion, pp. 1–8 (2011)

    Google Scholar 

  40. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)

    Article  Google Scholar 

  41. Sallans, B., Hinton, G.E.: Reinforcement learning with factored states and actions. J. Mach. Learn. Res. 5, 1063–1088 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Schüssel, F., Honold, F., Weber, M.: Using the transferable belief model for multimodal input fusion in companion systems. In: Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction, pp. 100–115. Springer, Berlin (2013)

    Google Scholar 

  43. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, vol. 6. Springer, New York (1998)

    MATH  Google Scholar 

  45. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. Artif. Intell. 112(1), 181–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sutton, C., McCallum, A., Rohanimanesh, K.: Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. J. Mach. Learn. Res. 8, 693–723 (2007)

    MATH  Google Scholar 

  47. Theocharous, G., Kaelbling, L.P.: Approximate planning in POMDPs with macro-actions. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16, pp. 775–782. MIT Press, Cambridge (2004)

    Google Scholar 

  48. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  49. Williams, J.D., Poupart, P., Young, S.: Factored partially observable Markov decision processes for dialogue management. In: 4th Workshop on Knowledge and Reasoning in Practical Dialog Systems, International Joint Conference on Artificial Intelligence (IJCAI), pp. 76–82 (2005)

    Google Scholar 

  50. Young, S., Gasic, M., Thomson, B., Williams, J.D.: POMDP-based statistical spoken dialog systems: a review. Proc. IEEE 101(5), 1160–1179 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was done within the Transregional Collaborative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Geier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geier, T., Biundo, S. (2017). Multi-level Knowledge Processing in Cognitive Technical Systems. In: Biundo, S., Wendemuth, A. (eds) Companion Technology. Cognitive Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43665-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43665-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43664-7

  • Online ISBN: 978-3-319-43665-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics