Skip to main content

Uncomputability and Physical Law

  • Chapter
  • First Online:
The Incomputable

Part of the book series: Theory and Applications of Computability ((THEOAPPLCOM))

  • 1339 Accesses

Abstract

This paper investigates the role that uncomputability plays in the laws of physics. While uncomputability might seem like an abstract mathematical concept, many questions in physics involve uncomputability. In particular, the form of the energy spectrum of quantum systems capable of universal computation is uncomputable: to answer whether a Hamiltonian system is gapped or gapless in a particular sector requires one to solve the Halting problem. Finally, the problem of determining the most concise expression of physical laws requires one to determine the algorithmic complexity of those laws, and so, the answer to this problem is uncomputable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.M. Turing, Proc. Lond. Math. Soc. 242, 230–265, 243, 544–546 (1937)

    Google Scholar 

  2. K. Gödel, Monatsschr. Math. Phys. 38, 173–198 (1931)

    Article  Google Scholar 

  3. M. Cunningham, The History of Computation (AtlantiSoft, New York, 1997)

    Google Scholar 

  4. C. Shannon, A symbolic analysis of relay and switching circuits. M.S. thesis, MIT, 1937

    Google Scholar 

  5. S. Lloyd, Phys. Rev. Lett. 75, 346–349 (1995)

    Article  Google Scholar 

  6. D. Deutsch, A. Barenco, A. Ekert, Proc. R. Soc. Lond. A 8, 669–677 (1995)

    Article  Google Scholar 

  7. F. Barahona, J. Phys. A 15, 3241 (1982)

    Article  MathSciNet  Google Scholar 

  8. S. Lloyd, Science 261, 1569–1571 (1993)

    Article  Google Scholar 

  9. R.P. Feynman, Found. Phys. 16, 507–531 (1986)

    Article  MathSciNet  Google Scholar 

  10. S. Lloyd, Phys. Rev. Lett. 71, 943–946 (1993); J. Mod. Opt. 41, 2503–2520 (1994)

    Google Scholar 

  11. T. Cubitt et al. (in preparation)

    Google Scholar 

  12. R.J. Solomonoff, Inf. Control. 7, 224–254 (1964)

    Article  MathSciNet  Google Scholar 

  13. A.N. Kolmogorov, Probl. Inf. Transm. 1, 3–11 (1965)

    Google Scholar 

  14. G.J. Chaitin, J. Assoc. Comput. Mach. 13, 547–569 (1966)

    Article  Google Scholar 

  15. L. Blum, M. Shub, S. Smale, Bull. Am. Math. Soc. 21, 1–46 (1989)

    Article  Google Scholar 

  16. S. Lloyd, Science 273, 1073–1078 (1996)

    Article  MathSciNet  Google Scholar 

  17. W. Zhang, D. Cory, Phys. Rev. Lett. 80, 1324–1347 (1998)

    Article  Google Scholar 

  18. M.W. Johnson et al., Nature 473, 194–198 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Scott Aaronson for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Lloyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lloyd, S. (2017). Uncomputability and Physical Law. In: Cooper, S., Soskova, M. (eds) The Incomputable. Theory and Applications of Computability. Springer, Cham. https://doi.org/10.1007/978-3-319-43669-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43669-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43667-8

  • Online ISBN: 978-3-319-43669-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics