Skip to main content

Fingerprinting and Reconstruction of Functionals of Discrete Time Markov Chains

  • Conference paper
  • First Online:
Analytical and Stochastic Modelling Techniques and Applications (ASMTA 2016)

Abstract

We explore various fingerprinting options for functionals of Markov chains with a low number of parameters describing both stationary behaviour and correlation over time. We also present reconstruction methods using lazy Markov chains for the various options. The proposed methods allow for efficient simulation of input data with statistical properties similar to actual real data to serve as realistic input of a data processing system. Possible applications include resource allocation in data processing systems. The methods are validated on data from real-life telecommunication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Billingsley, P.: Statistical methods in Markov chains. Ann. Math. Statist. 32(1), 12–40 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through simple statistical fingerprinting. ACM SIGCOMM Comput. Commun. Rev. 37(1), 5–16 (2007)

    Article  Google Scholar 

  3. Wilmer, E.L., Levin, D.A., Peres, Y.: Markov Chains and Mixing Times. American Mathematical Soc., Providence (2009)

    MATH  Google Scholar 

  4. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70(3), 419–435 (2002)

    Article  MATH  Google Scholar 

  5. Hamilton, D.: Time Series Analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  6. Hausser, J., Strimmer, K.: Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. J. Mach. Learn. Res. 10, 1469–1484 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Davis, R.A., Brockwell, P.J.: Time Series: Theory and Methods. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  8. Serrí, J., Arcos, J.L.: An empirical evaluation of similarity measures for time seriesclassification. Know.-Based Syst. 67, 305–314 (2014)

    Article  Google Scholar 

  9. Wagner, N.R.: Fingerprinting. In: Proceedings of the 1983 IEEE Symposium on Security and Privacy, SP 1983, p. 18. IEEE Computer Society, Washington (1983)

    Google Scholar 

  10. Wang, H., Song, M.: Ckmeans. 1d. dp: optimal k-means clustering in one dimension bydynamic programming. R J. 3(2), 29–33 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illés Horváth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Egri, A., Horváth, I., Kovács, F., Molontay, R. (2016). Fingerprinting and Reconstruction of Functionals of Discrete Time Markov Chains. In: Wittevrongel, S., Phung-Duc, T. (eds) Analytical and Stochastic Modelling Techniques and Applications. ASMTA 2016. Lecture Notes in Computer Science(), vol 9845. Springer, Cham. https://doi.org/10.1007/978-3-319-43904-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43904-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43903-7

  • Online ISBN: 978-3-319-43904-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics