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Abstract

We study chain-referral methods for sampling in social networks.
These methods rely on subjects of the study recruiting other partic-
ipants among their set of connections. This approach gives us the
possibility to perform sampling when the other methods, that imply
the knowledge of the whole network or its global characteristics, fail.
Chain-referral methods can be implemented with random walks or
crawling in the case of online social networks. However, the estima-
tions made on the collected samples can have high variance, especially
with small sample size. The other drawback is the potential bias due
to the way the samples are collected. We suggest and analyze a sub-
sampling technique, where some users are requested only to recruit
other users but do not participate to the study. Assuming that the
referral has lower cost than actual participation, this technique takes
advantage of exploring a larger variety of population, thus decreas-
ing significantly the variance of the estimator. We test the method
on real social networks and on synthetic ones. As by-product, we
propose a Gibbs like method for generating synthetic networks with
desired properties.

1 Introduction

Online social networks (OSNs) are thriving nowadays. The most popular
ones are: Google+ (about 1.6 billion users), Facebook (about 1.28 billion
users), Twitter (about 645 million users), Instagram (about 300 million
users), LinkedIn (about 200 million users). These networks gather a lot
of valuable information like users’ interests, users’ characteristics, etc. Great
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part of it is free to access. This information can facilitate the work of so-
ciologists and give them modern instrument for their research. Of course,
real social networks continue to be of great interest to sociologists as well
as online social networks. For example, the Add Health study [2] has built
the networks of the students at selected schools in the United States, which
served as the basis of much further research [10].

The network, besides being itself an object of study, is also an instrument
for collecting data. Starting just from one individual that we observe we can
reach other representatives of this network. The sampling methods that use
the contacts of known individuals of a population to find other members
are called chain-referral methods. Crawling of online social networks can
be viewed as automatisation of chain-referral methods. Moreover, it is one
of the few methods to collect information about hidden populations, whose
members are, by definition, hard to reach. A lot of research has targeted the
study of HIV prevalence in hidden populations like drug users, female sex
workers [11], gay men [12]. Another study [9] considered the population of
jazz musicians. Even if jazz musicians have no reasons to hide them, it is
still hard to access them with the standard sampling methods.

The problem of the chain-referral methods is that they do not achieve
independent sampling from the population. It is frequently observed that
friends tend to have similar interests. It can be the influence of your friend
that leads you to listening the rock music or the opposite: you became friends
because you were both fond of it. One way or another, social contacts in-
fluence each other in different ways. The fact that people in contact share
common characteristics is usually observed in real networks and is called
homophily. For instance, the study [6] evaluated the influence of social con-
nections (friends, relatives, siblings) on obesity of people. Interestingly, if a
person has a friend who became obese during some fixed interval of time, the
chances that this person becomes obese are increased by 57%.

The population sample obtained through chain-referral methods is differ-
ent from the ideal uniform independent sample and, because of homophily,
leads to increased variance of the estimators as we are going to show. The
main contribution of this paper is the proposed chain-referral method that
allows to decrease the dependency of the collected values by subsampling.
Subsampling is done via asking/inferring only contact details of some users
without taking any further information.

As by-product of our numerical studies, we develop a Gibbs-like method
for generating synthetic attributes’ distribution over networks with desired

2



properties. This approach can be used for extensive testing of methods in
social network analysis and hence can be of independent interest.

The paper is organized as follows. In Sec. 2 we discuss different estimators
of the population mean and the problem of correlated samples. Sec. 3
presents the subsampling method, that can help to reduce the correlation.
In Sec. 4 we evaluate the subsampling method formally, starting from the
simple, but intuitive example of a homogeneous correlation (Sec. 4.1), and
then moving to the general case (Sec. 4.2). The theoretical results are then
validated by the experiments in Sec. 5. Sec. 5.0.3 presents also the method
for generating synthetic networks that we used for the experiments together
with the real data.

2 Chain-referral Methods and Estimators

Chain-referral methods take advantage of the individuals connections to ex-
plore the network: each study participant provides the contacts of other
participants. The sampling continues in this way until the needed size of
participants is reached.

In order to study formally chain-referral methods we will model the social
network as a graph, where the individuals are represented by nodes and
a contact between two individuals is represented by an edge between the
corresponding nodes. We will make the following assumptions:

1. One individual can refer exactly another individual, selected uniformly
at random from his contacts;

2. The same individual can be recruited multiple times;

3. If individual A knows individual B then individual B knows A as well
(the network can be represented as an undirected graph);

4. Individuals know and report precisely their number of connections (i.e.
their degree);

5. Each individual is reachable from any other individual (the network is
connected).

Under these assumptions the referral process can be regarded as a random
walk on the graph. For the real social networks some of these assumptions
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are arguable. There can be inaccuracy in the reported degree, and the choice
of the contact to refer can be different from uniform. The sensitivity to
violation of some assumptions is studied in [7]. However, it is simpler to
design chain-referral methods for online social networks, that satisfy all these
assumptions. For example, the individual may be asked to disclose his whole
list of contacts (if not already public) and the next participant can then be
selected uniformly at random from it.

The random walk is represented by the transition matrix P with elements:

pij =


1
di

if i and j are neighbors,

0 if i and j are not neighbors,
0 if i = j,

where di is the degree of the node i.
We denote as gj the value of interest at node j. We are interested to

estimate the population average µ =

m∑
i=1

gi

m
, where m is the population size.

Moreover, let us denote the value that is observed at step i of the random
walk as yi. Some estimators were developed in order to draw conclusions
about the population average µ from the collected sample y1, y2, ...yn. The
simplest estimator of the population mean is the Sample Average (SA)
estimator:

µ̂SA =
y1 + y2 + ...+ yn

n
.

This estimator is biased towards the nodes with large degrees. Indeed the
individuals with more contacts are more likely to be sampled by the random
walk. In particular, the probability at a given step to encounter node i is
proportional to its degree di. To correct this bias the Volz-Heckathon
(VH) estimator, which was introduced in [13], weights the responses from
individuals according to their number of contacts:

µ̂V E =
1

n∑
i=1

1/di

n∑
i=1

yi
di
.

2.0.1 Problem of Samples Correlation

Due to the way the sample was collected the variance of both estimators
will be increased in comparison to the case of independent sampling. Our
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theoretical analysis will focus on the SA estimator, as for the VH estimator
it becomes too complicated and we leave its analysis for future research.
However, we consider the VH estimator in the simulations.

The variance of the estimator in the case of independent sampling with
replacement is approximated by σ2/n for large population size, where σ2 is
the population variance. If samples are not independently selected, then a
correlation factor f(n,S) should be considered as follows:

σ2
µ̂S

=
σ2

n
f(n,S). (1)

This correlation factor f(n,S) depends on the sampling method S as
well as on the size of the sample. We observe that f(n,S) is an increasing
function of n bounded by 1 and n. The less the samples obtained through
the sampling method S are correlated, the smaller we expect f(n,S) to be.

In what follows we consider chain-referral methods when only one indi-
vidual out of k is asked for his value. Among these methods the correlation
factor f(n,S) will be a function of the number of values collected, n, and of
k, so we can write f(n, k). We expect f(n, k) to be decreasing in k.

3 Subsampling Technique

In order to reduce correlation between sampled values we will try to decrease
the dependency of the samples. Our idea is to thin out the sample. Indeed,
the farther are the individuals in the chain from each other, the smaller is
the dependency between them. Imagine to have contacted an even number
h individuals, but to ask the value of interest only to every second of them.
We can use then the n = h/2 values. It should be observed that, while
we reduce in this way the correlation factor (because f(h/2, 2) < f(h, 1)),
we also reduce by 2 the number of samples used in the estimation. Then
while f(n, k) becomes smaller in Eq. (1) because of the reduction of the

correlation, it is not clear if f(n,k)
n

becomes smaller.
Another potential advantage originates from the fact that the cost of

the referring is less than the cost of the actual sampling. For example, the
information about the friends in Facebook is generally available, thus you
can serf through the Facebook graph by writing a simple crawler. On the
contrary retrieving the information of interest can be more costly and one
may need to provide some form of incentives to participants to encourage
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them to answer some questionnaires. In other context, one may need to pay
the users also to reveal the identity of one of his contacts.

Among the individuals in the collected chain some of them will be asked
both: to participate in the tests and provide the reference, let us call them
participants. Some of them will be asked only to recruit other participants,
let us call them referees. We will look at the strategy when only each k-th
individual in the chain is a participant. Thus between 2 participants there
are always k − 1 referees. We will call this approach subsampling with step
k. Let C1 be the payment for providing the reference and C2 the payment
for the participation in the test. In this way, every referee receives C1 units
of money and every participant receives C1 + C2 units of money (C1 for the
reference and C2 for the test). In this way, for a fixed budget B, if C2 > 0,
the subsampling decreases less in the number of samples.

It is evident that the bigger is k, the lower is the correlation between the
selected samples. However the choice of the k is not evident: if we take it
too small the dependency can be still high; if we take it too big the sample
size will be inadequate to make conclusions. It also depends on the level of
homophily in the network: with the low level of homophily the best choice
would be to take k equal to 1, what means no referees only participants. In
the following section we formalize the qualitative results derived here and we
determine the value k, such that the profit from the subsampling is maximal.

4 Analysis

In this section we study formally the effect of subsampling. We start with a
case when the collected samples are correlated in a known and homogeneous
way. While being a too simplified model for the chain-referral methods, it
illustrates the main idea of subsampling. We proceed then with the general
case, when the samples are collected through the random walk on a general
graph.

4.1 Simple Example: Variance with Geometric Corre-
lation

First we will quantify the variance of the estimator for a simple case with
defined correlation between the samples in the chain. We will assume that
collected samples Y1, Y2, ..., Yn are correlated in the following way:
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corr(Yi, Yi+l) = ρl.

In this way the nodes that are at the distance 1 in the chain have cor-
relation ρ, at distance 2 have correlation ρ2 an so on1. We will refer to this
model as the geometric model 2. If the population variance is σ2, then we
can obtain the variance of the SA estimator in the following way:

σ2
µ̂SA

= Var
[
Ȳ
]

= Var

[
Y1 + Y2 + ...+ Yn

n

]
=

1

n2

n∑
i=1

n∑
j=1

Cov(Yi, Yj) =

=
σ2

n2

(
n+ 2

n−1∑
i=1

(n− i)ρi
)

=
σ2

n2

(
n+ 2n

n−1∑
i=1

ρi − 2
n−1∑
i=1

iρi

)
=

=
σ2

n

(
n+ 2n

ρ− ρn

1− ρ
− 2ρ

(
ρ− ρn

1− ρ

)′)
=
σ2

n2

n− nρ2 − 2ρ+ 2ρn+1

(1− ρ)2
.

From here we can get that correlation factor as:

f(n, 1) =
1− ρ2 − 2ρ/n+ 2ρn+1/n

(1− ρ)2
.

It can be shown that this factor f(n) is an increasing function of n ∈ N
and it achieves its minimum value 1 when n = 1. It is clear, when there is
only one individual there is no correlation, because we consider single random
variable Y1. When new participants are invited, the correlation increases due
to homophily as we explained earlier.

Let us consider what happens to the correlation factor when n goes to
infinity:

f(n, 1) =
1− ρ2 − 2ρ/n+ 2ρn+1/n

(1− ρ)2
n→∞−−−→ 1− ρ2

(1− ρ)2
=

1 + ρ

1− ρ
,

1We are ignoring here the effect of resampling
2It could be adopted to model the case where nodes are on a line and social influences

are homogeneous.
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and then f(n, 1) ≤ 1+ρ
1−ρ ∀n. Using this upper bound the expression for the

SA estimator variance can be bounded as σ2
µ̂SA
≤ σ2

n
1+ρ
1−ρ .

This bound is very tight when n is large enough, so that it can be used
as a good approximation:

σ2
µ̂SA
' σ2

n

1 + ρ

1− ρ
.

Figure 1 compares the approximated expression with original one, when
the parameter ρ is 0.6. As it is reasonable to suppose that the sample size
is bigger than 50, we can consider this approximation good enough in this
case. The reason to use this approximation is that the expression becomes
much simpler to illustrate the main idea of the method.

Figure 1: ρ = 0.6

4.1.1 Variance for subsampling

Here we will quantify the variance of the SA estimator on the subsample. For
simplicity let us take h = nk, where the collected samples Y1, Y2, Y3, ..., Ynk
have again geometric correlation. We will take each k sample and look at
the variance of the following random variable:

Ȳ k =
Yk + Y2k + Y3k + ...+ Ynk

n
.

Let us note that the correlation between the variables Yik and Y(i+l)k is:

corr(Yik, Y(i+l)k) = ρkl.

Using the result of Sec. 4.1, we obtain:

Var
[
Ȳ k
]

=
σ2

n

1− ρ2k − 2ρk/n+ 2ρk(n+1)/n

(1− ρk)2
.
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or the approximate form:

Var
[
Ȳ k
]
' σ2

n

1 + ρk

1− ρk
. (2)

4.1.2 Limited Budget

Equation (2) gives the expression for the variance of the subsample, where
the number of actual participants is n and two consecutive participants in
the chain are separated by k − 1 referees. It is evident that in order to
decrease the variance, one needs to take as many participants as possible
separated by as many referees as possible. However both of them have their
cost. If limited budget B is available, then a chain of length h = nk with n
participants is restricted by the following equality:

B ≥ hC1 + nC2,

where each reference costs C1 units of money and each test costs C2 units of
money. We can express the maximum length of the chain as: h = kB

kC1+C2
,

where the number of actual participants is n = h
k

= B
kC1+C2

.
The approximate variance of SA estimator becomes as follows:

σ2
µ̂SA

(k) =
σ2

B
kC1+C2

1 + ρk

1− ρk
. (3)

Figure 2: Variance with Equation 3 when B = 100, C1 = 1, C2 = 4

Let us observe what happens to the factors of the variance when we
increase k. The first factor in (3) increases in k: the variance increases due
to smaller sample size. The second factor decreases in k: the observations
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become less correlated. Finally, the behavior of the variance depends on
which factor is “stronger.”

We can observe the trade-off in Figure 2: initially increasing the subsam-
pling step k can help to reduce the estimator variance. However, after some
threshold the further increase of k will only add to the estimator variance.
Moreover, this threshold depends on the level of correlation, that is expressed
here by the parameter ρ. We observe from the figure that the higher is ρ the
higher is the desired k. This coincides with our intuition: the higher is the
dependency, the more values we need to skip. Finally we see, that in case of
no correlation (ρ = 0) skipping nodes is useless.

4.2 General Case

Even if the geometric model is not realistic, it allowed us to better understand
the potential improvement from subsampling. This section will generalize
this idea to the case where the samples are collected through a random walk
on a graph with m nodes. We consider first the case without subsampling
(k = 1).

Let g = (g1, g2, ..., gm) be the values of the attribute on the nodes 1, 2, ...,m.
Let P be the transition matrix of the random walk.

The stationary distribution of the random walk is:

π =

(
d1∑n
i=1 di

,
d2∑n
i=1 di

, ...,
dn∑n
i=1 di

)
,

where di is the degree of the node i.
Let Π be the matrix that consists of m rows, where each row is the vector

π. If the first node is chosen according to the distribution π, then variance
for any sample Yi

3 is the following:

Var(Yi) =< g, g >π − < g,Πg >π,where < a, b >π=
m∑
i=1

aibiπi.

and covariance between the samples Yi and Yi+l is the following [5, chapter 6]:

Cov(Yi, Yi+l) =< g, (P l − Π)g >π,

3Note that Yi = gj if the random walk is on node j at the i-th step.
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Using these formulas we can write the formula for the variance of the
estimator as:

Var
[
Ȳ
]

=
1

n2

nVar(Yi) + 2
n∑
i=1

n∑
j|i<j

Cov(Yi, Yj)

 =

=
1

n2

n(< g, g >π − < g,Πg >π) + 2
n∑
i=1

n∑
j|i<j

< g, (P j−i − Π)g >π

 (4)

Eq. (4) is quite cumbersome: computing large powers of the m by m
matrix P can be unfeasible. Using the spectral theorem for diagonalizable
matrices:

Var
[
Ȳ
]

=
1

n

m∑
i=2

1− λ2i − 2λi
n

+ 2
λn+1
i

n

(1− λi)2
< g, vi >

2
π, (5)

where λi, vi, ui(i = 1..m) are respectively eigenvalues, right eigenvectors and

left eigenvectors of the auxiliary matrix P ∗ 4, defined as P ∗ , D
1
2PD−

1
2 ,

where D is the m×m diagonal matrix with dii = πi.
In the case of subsampling similar calculation can be carried on leading

to:

Var
[
Ȳ k
]

=
1
B

kC1+C2

m∑
i=2

1− λ2ki − 2
λki
B

kC1+C2

+ 2
λ
k( B

kC1+C2
+1)

i
B

kC1+C2

(1− λi)2k
< g, vi >

2
π . (6)

As in the geometric model Eq. (6) can be approximated as follows:

σ2
µ̂SA

= Var
[
Ȳ k
]

=
1
B

kC1+C2

m∑
i=2

1 + λki
1− λki

< g, vi >
2
π .

Interestingly, the expression for the variance in the general case has the
same structure as for the geometric model. Therefore, the interpretation of
the formula is the same. There are two factors, that “compete” with each

4Matrix P ∗ is always diagonalizable for RW on undirected graph.

11



other. If we try to decrease the first factor, we will increase the second one
and the opposite. In order to find the desired parameter k we need to find
the minimum of the estimator function for variance. Even if it is difficult to
obtain the explicit formula for k, the fact that k is integer allows us to find
it through binary search.

The quality of an estimator does not depend only on its variance, but
also on its bias:

Bias(µ̂SA) = E[µ̂SA]− µ =< g, π > −µ. (7)

Then the mean squared error of the estimator, MSE(µ̂SA), is:

MSE(µ̂SA) = Bias(µ̂SA)2 + Var(µ̂SA). (8)

This bias can be non-null if the quantity we want to estimate is correlated
with the degree. In fact, we observe that the random walk visits the nodes
with more connections more frequently. Subsampling has no effect on such
bias, hence minimizing the variance leads to minimizing the mean squared
error.

5 Numerical Evaluation

To validate our theoretical results we performed numerous simulations. We
considered both real datasets from the Project 90 [3] and Add health [2], as
well as synthetic datasets, obtained through the Gibbs sampler. Both the
Project 90 and the Add health datasets contain the graph describing the
social contacts as well as information about the users.

5.0.1 Data from the Project 90

Project 90 [3] studied how the network structure influences the HIV preva-
lence. Besides the data about social connections the study collected some
data about drug users, such as race, gender, whether he/she is a sex worker,
pimp, sex work client, drug dealer, drug cook, thief, retired, housewife, dis-
abled, unemployed, homeless. For our experiments we took the largest con-
nected component from the available data, which consists of 4430 nodes and
18407 edges.
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5.0.2 Data from the Add Health Project

The National Longitudinal Study of Adolescent to Adult Health (Add Health)
is a huge study that began surveying students from the 7-12 grades in the
United States during the 1994-1995 school year. In general 90,118 students
representing 84 communities took part in this study. The study kept on
surveying students as they were growing up. The data include, for example,
information about social, economic, psychological and physical status of the
students.

The network of students’ connections was built based on the reported
friends by each participant. Each of the students was asked to provide the
names of up to 5 male friends and up to 5 female ones. Then the network
structure was built to analyze if some characteristics of the students indeed
are influenced by their friends.

Though these data are very valuable, they are not freely available. How-
ever a subset of the data can be accessed through the link [1] but only with
few attributes of the students, such as: sex, race, grade in school and, whether
they attended middle or high school. There are several networks available for
different communities. We took the graph with 1996 nodes and 8522 edges.

5.0.3 Synthetic Datasets

To perform extensive simulations we needed more graph structures with node
attributes.

There is no lack of available real network topologies. For example, the
Stanford Large Network Dataset Collection [4] provides data of Online-Social
Networks (we will use part of Facebook graph), collaboration networks, web
graphs, Internet peer-to-peer network and a lot of others. Unfortunately, in
most of the cases, nodes do not have any attribute.

At the same time random graphs can be generated with almost arbitrary
characteristics (e.g. number of nodes, links, degree distribution, clustering
coefficient). Popular graph models are Erdős-Rényi graph, random geometric
graph, preferential attachments graph. Still, there is no standard way to
generate synthetic attributes for the nodes and in particular providing some
level of homophily (or correlation).

In the same way we can generate numerous random graphs with desired
characteristics, we wanted to have mechanism to generate the values on the
nodes of the given graph which will represent needed attribute, which will
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satisfy the following properties:

1. Nodes attributes should have the property of homophily

2. We should have the mechanism to control the level of homophily

These properties are required to evaluate the performance of the sub-
sampling methods. In what follows we derive a novel (to the best of our
knowledge) procedure for synthetic attributes generation.

First we will provide some definitions. Let us imagine that we already
have a graph with m nodes. It may be the graph of a real network or
a synthetic one. Our technique is agnostic to this aspect. To each node
i, we would like to assign a random value Gi from the set of attributes
V, V = {1, 2, 3, ..., L}. Instead of looking at distributions of the values on
nodes independently, we will look at the joint distribution of values on all
the nodes.

Let us denote (G1, G2, ..., Gm) as Ġ. We call Ġ a random field on graph.
When random variables G1, G2, ..., Gm take respectively values g1, g2, ..., gm,
we call (g1, g2, ..., gm) a configuration of the random field and we denote it as
ġ. We will consider random fields with a Gibbs distribution [5].

We can define the global energy for a random field Ġ in the following way:

ε(Ġ) ,
∑

i∼j,i≤j

(Gi −Gj)
2,

where i ∼ j means that the nodes i and j are neighbors in the graph.
The local energy of node i is defined as:

εi(Gi) ,
∑
j|i∼j

(Gi −Gj)
2.

According to the Gibbs distribution, the probability that the random field
Ġ takes the configuration ġ is:

p(Ġ = ġ) =
e−

ε(ġ)
T∑

ġ′∈|V |m
e−

ε(ġ′)
T

, (9)

where T > 0 is a parameter called the temperature of the Gibbs field.
The reason why it is interesting to look at this distribution follows from

[5, theorem 2.1]: when a random field has distribution (9) then the probability
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(a) Temperature 1 (b) Temperature 5

(c) Temperature 20 (d) Temperature 1000

Figure 3: RGG(200, 0.13) with generated values for different temperature

that the node has particular value depends only on the values of its neighboring
nodes and does not depend on the values of all other nodes.

Let Ni be the set of neighbors of node i. Given a subset L of nodes, we let
ĠL denote the set of random variables of the nodes in L. Then the theorem
can be formulated in the following way:

p(Gi = gi|ĠNi
= ġNi

) = p(Gi = gi|Ġ{1,2,...,m}\i = ġ{1,2,...,m}\i).

This property is called Markov property and it will capture the homophily
effect: the value of a node is dependent on the values of the neighboring
nodes. Moreover, for each node i, given the values of its neighbors, the
probability distribution of its value is:

p(Gi = gi) =
e−

εi(gi)

T∑
g′∈V

e−
εi(g

′)
T

.
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The temperature parameter T plays a very important role to tune the
homophily level (or the correlation level) in the network. Low temperature
gives us network with highly correlated values. Increasing temperature we
can add more and more “randomness” to the attributes.

In Figure 3 we present the same random geometric graph with 200 nodes
and radius 0.13, RGG(200, 0.13) where the values V = {1, 2, ..., 5} are chosen
according to the Gibbs distribution and depicted with different colors. From
the figure we can observe that the level of correlation between values of the
node changes with different temperature. When temperature is 1 we can
distinguish distinct clusters. When the temperature increases (T = 5 and
T = 20), the values of neighbors are still similar but with more and more
variability. When the temperature is very high then the values seem to be
assigned independently.

5.1 Experimental Results

We performed simulations for two reasons: first, to verify the theoretical
results; second, to see if subsampling gives improvement on the real datasets
and on the synthetic ones.

The simulations for a given dataset are performed in the following way.
For the fixed budget B, rewards C1 and C2, we first collect the samples
through the random walk on the graph for the subsampling step 1. We
estimate the population average with the SA and VH estimators. Then we
repeat this operation in order to have multiple estimates for the subsampling
step 1, that we can count the mean squared error of the estimator. The same
process is performed for different subsampling steps. In this way we can
compare the mean squared error for different subsampling steps and choose
the optimal one.

Figure 4 presents the experimental mean squared error of the SA and VH
estimators and also the mean squared error of the SA obtained through Eqs.
(6), (7), (8) for different subsampling steps. From the figure we can observe
that the experimental results are very close to the theoretical ones. We can
notice that both estimators gain from subsampling. Another observation is
that the best subsampling step differs for different attributes. Thus, for the
same graph from Add health study, we observe different optimal k for the
attributes grade, gender and school (middle or high school) . The reason is
that the level of homophily changes depending on the attribute, even if the
graph structure is the same. We obtain the similar results for the synthetic
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datasets. We see that for the Project 90 graph the optimal subsampling
step for the temperature 100 (low level of homoplily) is lower than for the
temperature 10 (high level of homophily).

From our experiments we also saw that there is no estimator that performs
better in all cases. As stated in [8] the advantage to use VH appears only
when the estimated attribute depends on the degree of the node. Indeed, our
experiments show the same result.

(a) Project 90: pimp (b) Add health: grade

(c) Add health: school (d) Add health: gender

(e) Project 90: Gibbs values with
temperature 10

(f) Project 90: Gibbs values with
temperature 100

Figure 4: Experimental results
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6 Conclusion

In this work we studied the chain-referral sampling techniques. The way
of sampling and the presence of homophily in the network influence the es-
timator error due to the increased variance in comparison to independent
sampling. We proposed subsampling technique that allows to decrease the
mean squared error of the estimator by reducing the correlation between sam-
ples. The key-factor of successful sampling is to find the optimal subsampling
step.

We managed to quantify exactly the mean squared error of SA estimator
for different steps of subsampling. Theoretical results were then validated
with the numerous experiments, and now can help to suggest the optimal
step. Experiments showed that both SA and VH estimators benefit from
subsampling.

A challenge that we encountered during the study is the absence of mecha-
nism to generate network with attributes on the nodes. In the same way that
random graphs can imitate the structure of the graph we developed a mecha-
nism to assign values to the nodes that imitates the property of homophily in
the network. Created mechanism allows one to control the homophily level
in the network by tuning a temperature parameter. This model is general
and can also be applied in other tests.
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