Skip to main content

A Framework of the Semi-supervised Multi-label Classification with Non-uniformly Distributed Incomplete Labels

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9829))

Included in the following conference series:

  • 1286 Accesses

Abstract

In real world applications, the problem of incomplete labels is frequently encountered. These incomplete labels decrease the accuracy of the supervised classification model because of a lack of negative examples and the non-uniform distribution of the missing labels. In this paper, we propose a framework of the semi-supervised multi-label classification which can learn with the incompletely labeled training data, especially for the missing labels whose distribution is not a uniform distribution. With a modified instance weighted k nearest neighbor classifier, this framework recovers the labels of the training data, including both the incomplete labeled part and the unlabeled part, by iteratively updating the weight of each training instance in an acceptable execution time. The experimental results verify that the classification model trained from the recovered training data generates better prediction results in the testing phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Snoek, C.G., Worring, M., Van Gemert, J.C., Geusebroek, J.M., Smeulders, A.W.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of the 14th Annual ACM International Conference on Multimedia, pp. 421–430. ACM (2006)

    Google Scholar 

  2. Huiskes, M.J., Lew, M.S.: The MIR Flickr retrieval evaluation. In: Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 39–43. ACM (2008)

    Google Scholar 

  3. Srivastava, A., Zane-Ulman, B.: Discovering recurring anomalies in text reports regarding complex space systems. In: Proceedings of the IEEE Aerospace Conference, pp. 55–63 (2005)

    Google Scholar 

  4. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, pp. 681–687 (2001)

    Google Scholar 

  5. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) Machine Learning: ECML-98. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Yang, Y.: An evaluation of statistical approaches to text categorization. Inf. Retrieval 1(1–2), 69–90 (1999)

    Article  Google Scholar 

  7. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  8. Zhang, M.-L., Zhou, Z.-H.: ML-kNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  9. Guo, Y., Schuurmans, D.: Adaptive large margin training for multilabel classification. In: Proceeding of AAAI (2011)

    Google Scholar 

  10. Minh, H., Sindhwani, V.: Vector-valued manifold regularization. In: Proceeding of ICML (2011)

    Google Scholar 

  11. Bucak, S.S., Jin, R., Jain, A.K.: Multi-label learning with incomplete class assignments. In: Computer Vision and Pattern Recognition (CVPR), pp. 2801–2808. IEEE (2011)

    Google Scholar 

  12. Chen, M., Zheng, A., Weinberger, K.: Fast image tagging. In: Proceedings of the 30th International Conference on Machine Learning, pp. 1274–1282 (2013)

    Google Scholar 

  13. Sun, Y.Y., Zhang, Y., Zhou, Z.H.: Multi-label learning with weak label. In: Proceedings of 24th AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  14. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 213–220. ACM (2008)

    Google Scholar 

  15. Qi, Z., Yang, M., Zhang, Z.M., Zhang, Z.: Mining partially annotated images. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1199–1207. ACM (2011)

    Google Scholar 

  16. Zhao, F., Guo, Y.: Semi-supervised multi-label learning with incomplete labels. In: Proceedings of the 24th International Conference on Artificial Intelligence, pp. 4062–4068 (2015)

    Google Scholar 

  17. Qi, Z., Yang, M., Zhang, Z.M., Zhang, Z.: Multi-view learning from imperfect tagging. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 479–488. ACM (2012)

    Google Scholar 

  18. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  19. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)

    Article  Google Scholar 

  20. Briggs, F., Huang, Y., Raich, R., Eftaxias, K., Lei, Z., Cukierski, W., Hadley, S.F., Hadley, A., Betts, M., Fern, X.Z., Irvine, J., Neal, L., Thomas, A., Fodor, G., Tsoumakas, G., Ng, H.W., Nguyen, T.N.T., Huttunen, H., Ruusuvuori, P., Manninen, T., Diment, A., Virtanen, T., Mar-zat, J., Defretin, J., Callender, D., Hurlburt, C., Larrey, K., Milakov, M.: The 9th annual mlsp competition: new methods for acoustic classification of multiple simultaneous bird species in a noisy environment. In: 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–8. IEEE (2013)

    Google Scholar 

  21. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: ISMIR, vol. 8, pp. 325–330 (2008)

    Google Scholar 

  22. Zhang, Y., Zhou, Z.H.: Multilabel dimensionality reduction via dependence maximization. ACM Trans. Knowl. Discovery Data (TKDD) 4(3), 14 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Ru Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chung, CH., Dai, BR. (2016). A Framework of the Semi-supervised Multi-label Classification with Non-uniformly Distributed Incomplete Labels. In: Madria, S., Hara, T. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2016. Lecture Notes in Computer Science(), vol 9829. Springer, Cham. https://doi.org/10.1007/978-3-319-43946-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43946-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43945-7

  • Online ISBN: 978-3-319-43946-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics