Skip to main content

Hierarchical Topic Modeling Based on the Combination of Formal Concept Analysis and Singular Value Decomposition

  • Conference paper
  • First Online:
Multimedia and Network Information Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 506))

Abstract

One of the ways to describe the content of internet sources is known as topic modeling, which tries to uncover the hidden thematic structures in document collections. Topic modeling applied to social networks can be useful for analysis in case of crisis situations, elections, launching a new product on the market etc. It becomes popular research area in recent years and represents the methods to browse, search and summarize large amount of the textual data. The main aim of this paper is to describe a new way for topic modeling based on the usage of Formal Concept Analysis combined with reduction by Singular Value Decomposition of the input data matrix. In difference to other common used method for topic modeling our proposed method is able to generate topic hierarchy, which offer more detail analysis of topics within the collection. Our approach is experimentally tested on the selected dataset of Twitter network contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.sananalytics.com/lab/twitter-sentiment/.

References

  1. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 694–703 (2003)

    MATH  Google Scholar 

  2. Petterson, J., Buntine, W., Narayanamurthy, S., Caetano, T., Smola, A.: Word features for latent dirichlet allocation. Adv. Neural. Inform. Process. Syst. 23, 1921–1929 (2010)

    Google Scholar 

  3. Zhai, K., Boyd-Graber, J.: Online latent dirichlet allocation with infine vocabulary. In: Proceedings of ICML 2013, Atlanta, US, pp. 561–569 (2013)

    Google Scholar 

  4. Li, X., Ouyang, J., Lu, Y.: Topic modeling for large-scale text data. Front. Electr. Electron. Eng. 16(6), 457–465 (2015)

    Google Scholar 

  5. Hoffman, M., Blei, D., Wang, C., Paisley, D.: Stochastic variational inference. J. Mach. Learn. Res. 14, 1303–1347 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Blei, D., Griffiths, T., Jordan, M.: The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM 57(2), article number 7, 1–30 (2010)

    Google Scholar 

  7. Hofmann, T.: The cluster-abstraction model: Unsupervised learning of topic hierarchies from text data. In: Proceedings of IJCAI99, Stockholm, Sweden, pp. 682–687 (1999)

    Google Scholar 

  8. Paisley, J., Wang, C., Blei, D., Jordan, M.I.: Nested hierarchical dirichlet processes. IEEE Trans. Pattern Anal. Mach. Intell. 37(2), 256–270 (2015)

    Article  Google Scholar 

  9. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  11. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Set. Syst. 160, 130–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Antoni, L., Krajci, S., Kridlo, O., Macek, B., Piskova, L.: On heterogeneous formal contexts. Fuzzy Set. Syst. 234, 22–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krajči, S.: A generalized concept lattice. Logic J. IGPL 13(5), 543–550 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Butka, P., Pócs, J.: Generalization of one-sided concept lattices. Comput. Inf. 32(2), 355–370 (2013)

    MathSciNet  Google Scholar 

  15. Butka, P., Pocs, J.: Pocsova: On equivalence of conceptual scaling and generalized one-sided concept lattices. Inf. Sci. 259, 57–70 (2014)

    Google Scholar 

  16. Pocs, J., Pocsova, J.: Basic theorem as representation of heterogeneous concept lattices. Front. Comput. Sci. 9(4), 636–642 (2015)

    Google Scholar 

  17. Pocs, J., Pocsova, J.: Bipolarized extension of heterogeneous concept lattices. Appl. Math. Sci. 8(125–128), 6359–6365 (2014)

    Google Scholar 

  18. Antoni, L., Krajci, S., Kridlo, O.: Randomized Fuzzy Formal Contexts and Relevance of One-Sided Concepts, vol. 9113, pp. 183–199. ICFCA 2015, LNAI (Subseries of LNCS) (2014)

    Google Scholar 

  19. Butka, P., Pocs, J., Pocsova, J.: Reduction of concepts from generalized one-sided concept lattice based on subsets quality measure. Adv. Intell. Syst. Comput. 314, 101–111 (2015)

    Article  Google Scholar 

  20. Kardos, F., Pocs, J., Pocsova, J.: On concept reduction based on some graph properties. Knowl. Base Syst. 93, 67–74 (2016)

    Article  Google Scholar 

  21. Melo, C., Le-Grand, B., Aufaure, A.: Browsing large concept lattices through tree ex-traction and reduction methods. Int. J. Intell. Inf. Technol. (IJIIT) 9(4), 16–34 (2013)

    Article  Google Scholar 

  22. Snasel, V., Polovincak, M., Abdulla, H.: Concept lattice reduction by singular value decomposition. In: Proceedings of the SYRCoDIS 2007, Moscow, Russia (2007)

    Google Scholar 

  23. Kumar, C.A., Srinivas, S.: Concept lattice reduction using fuzzy k-means clustering. Expert Syst. Appl. 37(3), 2696–2704 (2010)

    Google Scholar 

  24. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    Article  Google Scholar 

  25. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  26. Sarnovsky, M., Carnoka, N.: Distributed algorithm for text documents clustering based on k-means approach. Adva. Intell. Syst. Comput. 430, 165–174 (2016)

    Article  Google Scholar 

  27. Sarnovsky, M., Ulbrik, Z.: Cloud-based clustering of text documents using the GHSOM algorithm on the GridGain platform. Proc. SACI 2013, 309–313 (2013)

    Google Scholar 

  28. Babic, F., Paralic, J., Bednar, P., Racek, M.: Analytical framework for mirroring and reflection of user activities in e-Learning environment. Adv. Intell. Soft Comput. 80, 287–296 (2010)

    Article  Google Scholar 

  29. Paralic, J., Richter, C., Babic, F., Wagner, J., Racek, M.: Mirroring of knowledge practices based on user-defined patterns. J. Univers. Comput. Sci. 17(10), 1474–1491 (2011)

    Google Scholar 

Download references

Acknowledgments

The work presented in this paper was supported by the Slovak VEGA grant 1/0493/16 and Slovak KEGA grant 025TUKE-4/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Butka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Smatana, M., Butka, P. (2017). Hierarchical Topic Modeling Based on the Combination of Formal Concept Analysis and Singular Value Decomposition. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds) Multimedia and Network Information Systems. Advances in Intelligent Systems and Computing, vol 506. Springer, Cham. https://doi.org/10.1007/978-3-319-43982-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43982-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43981-5

  • Online ISBN: 978-3-319-43982-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics